In vitro selection of Strains of Trichoderma spp.with phosphate solubilizing and indole acetic acid producing capacities
Paper Details
In vitro selection of Strains of Trichoderma spp.with phosphate solubilizing and indole acetic acid producing capacities
Abstract
Trichoderma spp., in addition to having biocontrolling effects on pathogens, exhibit phosphodissolvent and IAA production capacities; Our hypothesis suggests that the efficiency of some strains of Trichoderma in phosphodissolving and producing IAA is a function of the type of strain, the incubation time, and the concentration of specific precursors or inductors of hormones present in the system. The central aim of this investigation had as an objective the in vitro selection of strains of Trichoderma spp. isolated from the rhizosphere of beans and corn with phosphate solubilizing and indole acetic acid (IAA) producing capacities. Nine (9) different strains of Trichoderma were isolated and selected from the rhizosphere and rhizoplane of beans and corn. In order to evaluate their phosphodissolvent capacities, these strains were cultivated in three solid media and three liquid media with and without Phosphoric Rock (PR). The relative efficiency of solubilization (RSE), bioacidulation, and hosphodissolution was then determined. IAA production capacity was evaluated as a function of strain, time, and concentration of L-Tryptophan. For this, 9 strains of phosphodissolvent Trichoderma were tested, and 4 turned out to be IAA producers.There were highly significant differences (P ≤ 0.01) in phosphodissolvent capacity and IAA production in relation to the variables studied and the strains evaluated. It is an important mechanism of adaptation to the ecological success of both plants and microorganisms which in turn represents a valuable genebank for agro-ecological and agrobiotechnological applications.
Abd-Alla MH. 1994. Use of organic phosphorus by Rhizobium leguminosarum iovar. Viceae phosphatases. Biology and Fertility of Soils 18, 216-218. http://dx.doi.org/10.1007/BF00647669
Achá C. 2008. Aislamiento y multiplicación de cepas nativas de Trichoderma sp y su evaluación como biocontrolador de Fusarium sp y Rhizoctonia solani en plantas de tomate. Tesis de Licenciatura en Ingeniería Ambiental, 1-94.
Ahmad AA, Muhammad Z, Saima S, Muhammad N. 2011. Comparative effectiveness of Pseudomonas and Serratia sp. Containing ACC- deaminase for coinoculation with Rhizobuim leguminosarum to improven growth, nodulation, and yield of lentil. Biology and Fertility of Soils 47, 457-465. http://dx.doi.org/10.1007/s00374-011-0551-7
Altomare C, Norvell WA, Björkman T, Harman GE. 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology 65(7), 2926-2933.
Anacona AC, Sabogal SR. 2002. Efecto de diferentes tamaños de claro experimental sobre el proceso de sucesión en un pastizal del embalse San Rafael (La Calera- Cundinamarca). Acta Biológica Colombiana 2(2), 59-60.
Anwar G. 2000.Production of growth hormones and nitrogenase by diazotrophic bacteria and their effect on plant growth. PhD thesis, University of the Punjab, Lahore, 204.
Arshad M, Frankenberger WT. 1993. Microbial production of plant growth regulators. In: Meeting FB, Ed. Soil Microbial Ecology, Marcel Dekker lnc, New York, 307-347.
Barroso CB, Nahas E. 2005. The status of soil fractions and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology 29, 73-83. http://dx.doi.org/10.1016/j.apsoil.2004.09.005
Bashan Y, Holguin G, Bowers R. 1993. The degeneration of Cardon populations in Baja California Sur, Mexico. Cactus and Succulent Journal 65, 64-67.
Bar-Yosef B, Rogers RD, Wolfram JH, Richman E. 1999. Pseudomonas cepacia mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Science Society of America Journal 63, 1703-1708. http://dx.doi.org/10.2136/sssaj1999.6361703x
Bolan NS, Naidu R, Mahimairaja S, Baskaran S. 1994. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biology and Fertility of Soils 18, 311-319.
Börkman T, Blanchard LM, Harman GE. 1998. Growth enhancement of shrunfen-2 (sh2) Sweet Corn by Trichoderma harzianum 1295-22: Effect of Environmental Stress. Journal of the American Society for Horticultural Science 123(1), 35-40.
Boul SW, Eswaran H. 2000. Oxisols. Advances in Agronomy 68, 151-195.
Bric JM, Bostock RM, Silverstone SE. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose mambrane. Applied and Environmental Microbiology 57, 535-538.
Caipo ML, Duffy S, Zhao L, Schaffner DW. 2002. Bacillus megaterium spore germination is influenced by inoculum size. Journal of Applied Microbiology 92, 879-884. http://dx.doi.org/10.1046/j.1365-2672.2002.01597.x
Calderia AT, Feio SS, Arteiro JM, Coelho AV, Roseiro JC. 2008. Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. Journal of applied microbiology 104, 808-816
Calvo AM. 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genetics Biology 45, 689-701.
Campos WE, Saturnino HM, Costa Cruz Borges AL, Reis e Silva R, Mourão de Sousa B, Campos MM, Pinheiro Rogério MC. 2007. Apparent digestibility of diets containing different proportions of tomato by-products. Ciência Animal Brasileira 8(3), 479-484.
Carlile MJ, Watkinson SC, Gooday GW. 2001. The Fungi. Academic Press, Great Britain. 588 p. Celis B, Gallardo I. 2007. Estandarización de métodos de detección de promotores de crecimiento vegetal (Ácido indolacético y Giberelinas) en cultivos microbianos. Trabajo de grado de Microbiología Industrial. Pontificia Universidad Javeriana. Bogotá D.C., 153-155.
Cepeda ML, Gamboa AM. 2001. Hongos solubilizadores de fosfato aislados de rizósfera de Espeletia grandiflora Humb. Y Bonpl. (Páramo El Granizo-Monserrate) y su efecto sobre la disponibilidad de fósforo en el suelo. Trabajo de Grado. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biologia. Bogotá.
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess W, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Sussmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechonlogy 25. http://dx.doi.org/1007-1014.10.1038/nbt1325
Chigineva NI, Aleksandrova AV, Marshan S, Kandeler E, Tiunov AV. 2011. The importance of mycelial connection at the soil-litter interface for nutrient translocation, enzyme activity and litter decomposition. Applied Soil Ecology 51, 35–41 http://dx.doi.org/10.1016/j.apsoil.2011.08.009
Collados CC. 2006. Impacto de inoculantes basados en Azospirillum modificados genéticamente sobre la diversidad y actividad de los hongos de la micorriza arbuscular en rizosfera de trigo y maíz. Tesis Doctoral. Universidad de Granda. Facultad de Ciencias. Departamento de Microbiología. España.
Dandurand L, Knudsen G. 1993. Influence of Pseudomonas fluorescent on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83(3), 265-270. http://dx.doi.org/10.1094/Phyto-83-265
de Freitas JR, Banerjee MR, Germida JJ. 1997. Phosphate solubilizing rhizobacteria enhance the growth and yeild but not phosphorus uptake of canola (Brassica napus), Biology and Fertility of Soils 24, 358-364.
Flach EN, Quak W, Van Diest A. 1987. A comparison of the rock phosphate-mobilizing capacities of various crop species. Tropical Agriculture (Trinidad) 64, 347– 352.
Garbera P, Van Veen JA, Van Elsas JD. 2003. Predominant Bacillus spp. In agricultural soil under different management regimes detect via PCR-DGGE. Microbial Ecology 45, 302-316.
Glickmann E, Deessaux Y. 1995. A critical examination of the specificity of the Salkosky reagent for indolic compounds produced by phytopathogenic bacteria. Soil Biology and Biochemistry 45, 631-640.
Godes A. 2007. Perspectivas de los inoculantes fúngicos en Argentina. In: Izaguirre-Mayoral ML, Labandera C y Sanjuán J, Ed. Biofertilizantes en Iberoamérica: una vision técnica, científicay empresarial. Imprenta Denad Internacional, Montevideo, 11-14.
Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology 26, 192-195. http://dx.doi.org/10.1104/pp.26.1.192
Gravel V, Antoun H, Tweddell RJ. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology Biochemistry 39(8), 1968-1977. http://dx.doi.org/10.1016/j.soilbio.2007.02.015
Gregory PJ. 2006. Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57, 2-12. http://dx.doi.org/10.1111/j.1365-2389.2005.00778.x
Gyaneshwar P, KG Naresh LJ Parekh. 1998. Effect of buffering on the phosphate-solubilizing ability of microorganisms. World Journal of Microbiology and Biotechnology 14, 669-673. http://dx.doi.org/10.1023/A:1008852718733
Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93 http://dx.doi.org/ 10.1023/A:102066391625
Habte M, Osorio NW. 2001. Arbuscular Mycorrhizas: Producing and applying Arbuscular Mycorrhizal Inoculum. Honolulu: University of Hawaii, 47.
Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK. 1990. Solubilization of rock phosphate by rhizobium and bradyrhizobium. The Journal of General and Applied Microbiology 36, 81-92
Harman GE. 2000. Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84, 377–393. http://dx.doi.org/10.1094/PDIS.2000.84.4.377
He ZL, Zhu J. 1997. Transformation and bioavailability of specifically sorbed phosphate on varaiable-carge mineral soils. Biology and Fertility of Soils 25, 175-181. http://dx.doi.org/ 10.1007/s003740050300
He ZL, Zhu J. 1998. Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biology and Biochemistry 30, 917-923.
Hernández JL, Sánchez MI, García JG, Mayek N, González JM, Quiroz JDC. 2011. Caracterización molecular y agronómica de aislados de Trichoderma spp., nativos del noreste de México. Revista Colombiana de Biotecnología 12(2), 176-185
Hirsch AM, Fang Y, Asad S, Kapulnik Y. 1997. The role of phytohormones in plant-microbe symbioses. Plant Soil 194, 171–184. http://dx.doi.org/10.1023/A:1004292020902
Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease 87, 4-10. http://dx.doi.org/10.1094/PDIS.2003.87.1.4
Hoyos-Carvajal LM. 2008. Evaluación de aislamientos de Trichoderma spp. contra Rhizoctonia solani y Sclerotium rolfsii bajo condiciones in vitro y de invernadero. Agronomia Colombiana
Ilmer P, Schinner F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology and Biochemistry 24, 389-395.
Iyamuremye F, Dick RP. 1996. Organic amendments and phosphorus sorption by soils. Advances in Agronomy 56, 139-185.
Johnson NC, Graham JH, Smith FA.. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135, 575-585. http://dx.doi.org/10.1046/j.1469-8137.1997.00729.x
Jones DL. 1998. Organic acids in the rhizosphere a critical review. Plant Soil 204, 25- 44. http://dx.doi.org/10.1023/A:1004356007312
Kim KY, McDonald GA, Jordan D. 1997. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils 24,347-352. http://dx.doi.org/10.1007/s003740050256
Kloepper JW. 1993. Plant Growth Promoting Rhizobacteria as Biological Control Agents. In: F. B. Metting, Ed, Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., New York, USA.
Knox OGG, Killham K, Leifert C. 2000. Effects of increased nitrate availability on the control of plantpathogenic fungi by the soil bacterium Bacillus subtilis. Applied Soil Ecology 15, 227-231. http://dx.doi.org/10.1016/S0929-1393(00)00098-6
Kucey RMN. 1983. Phosphate-solubilising bacteria and fungi in various cultivated and virgin Alberta soil. Canadian Journal of Plant Science 63, 671678 http://dx.doi.org/10.4141/cjss83-068
Kucey RMN, Leggett ME. 1989. Increased yields and phosphorus uptake by westar canola (Brassica napus L.) inoculated by a phosphate-solubilizing isolate of Penicillium bilaji. Canadian Journal of Plant Science 69, 425-432 http://dx.doi.org/10.4141/cjss89-042
Marschner P. 2008. The role of rhizosphere microorganisms in relation to P uptake by plants. In: White PJ, Hammond JP, Ed. The ecophysiology of plant-phosphorus interactions. © Springer Science, 296 http://dx.doi.org/10.1007/978-1-4020-8435-5_8
Marschner P, Yang CH, Lieberei R, Crowley DE. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil biology and biochemistry 33, 1437 – 1445.
Martinez SM, Martinez GA. 2000. Efects of Phosphate Solubilization Bacteria During the Rooting Period of SUGAR Cane (Saccharum offinarum), Venezuela 5171 Variety, on the Grower`s Oasis Substrate. Soil and Plant Nutrition 49, 2-9
Mathews CK, Van Holde KE, Ahern KG. 2002. Biochemistry. Third edition. Benjamin Cummings, San Francisco, 1186
Mc Spadden Gardener. 2004. Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. Symposium: The Nature and Application of Biocontrol Microbes: Bacillus spp. Phytophathology 94(11), 1252-1258 http://dx.doi.org/10.1094/PHYTO.2004.94.11.1252
Moreno-Sarmiento N, Moreno-Rodríguez L, Uribe-Vélez D. 2007. Biofertilizantes para la agricultura en Colombia, 38-45. In: Izaguirre-Mayoral ML, Labandera C Sanjuán J, Ed. Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Imprenta Denad Internacional, Montevideo.
Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chimica. Acta 27, 31-35. http://dx.doi.org/10.1016/S0003-2670(00)88444-5
Nahas, E. 1996. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology 12, 567-572. http://dx.doi.org/10.1007/BF00327716
Nahas E. 2007. Phosphate solubilizing microorganism:Effect of carbon, nitrogen and phosphorus sources. In: Velázquez E, Rodríguez- Barruco C, Ed. First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences 102. Springer, The Netherlands, 111-115. http://dx.doi.org/10.1007/978-1-4020-5765-6_15
Nopparat C, Jatupornpipat M, Rittiboon A. 2009. Optimization of the phosphate-solubilizing fungus, Aspergillus japonicus SA22P3406, in solid-state cultivation by response surface methodology. Kasetsart Journal – Natural Science 43, 172-181.
Ñústez E, Acevedo JC. 2005. Evaluación del uso de Penicillium janthinellum Biourge sobre la eficiencia de la fertilización fosfórica en el cultivo de la papa (Solanum tuberosum L. var. Diacol Capiro). Agronomía Colombiana. 23(2), 290-298.
Ocampo BM, Patiño LF, Marín MA, Salazar M, Gutiérrez P. 2012. Isolation and characterization of potential phytase-producing fungi from environmental samples of Antioquia (Colombia). Revista de la universidad Nacional de la Facultad de Agronomía 65, 6291-6303.
Osorio NW. 2008. Effectiveness of microbial solubilization of phosphate in enhancing plant phosphate uptake in tropical soils and assessment of the mechanisms of solubilization. Ph.D. Disertation. University of Hawaii, Honolulu, 392
Osorio NW. 2011. Effectiveness of phosphate solubilizing microorganisms in increasing plant phosphate uptake and growth in tropical soils. In: Maheshwari DK, Ed. Bacteria in agrobiology: plant nutrient management Volume III. Springer, Berlin, 65–80 http://dx.doi.org/10.1007/978-3-642-21061-7_4
Park MS, Seo GS, Lee KH, Bae KS, Yu SH. 2005 Morphological and cultural characterization of Trichoderma spp. associated with green mold of oyster mushroom in Korea. The Plant Pathology Journal 21, 221–228. http://dx.doi.org/10.4489/MYCO.2006.34.3.111
Prescott LM, Harley JP, Klein DA. 2004. Microbiología 5 ed. McGraw-Hill Interamericana. 1240
Reva ON, Dixelius C, Meijer J, Priest FG. 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS microbiology ecology 48, 249-259. http://dx.doi.org/10.1016/j.femsec.2004.02.003
Reyes I, Bernier L, Antoun H. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microbial Ecology 44(1), 39-48.
Reyes I, Bernier L, Simard RR, Antoun H.. 1999a. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. Microbial Ecology 28, 281-290. http://dx.doi.org/10.1111/j.15746941.1999.tb00583.x
Richardson AE. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology 28, 897–906
Rodríguez H, Fraga R. 1999. Phosphate Solubilizing Bacteria and their Role in Plant Growth Promotion. Biotechnology Advances 17, 319-339.
Rodríguez H, Fraga R, Gonzalez T, Bashan Y. 2006. Genetics of phosphate solubilization and its potential application for improving plant growth-promoting bacteria. Plant and Soil 287:15–21 http://dx.doi.org/10.1007/978-1-4020-5765-6_2
Rodriguez H, Gonzalez T, Goire I, Bashan Y. 2004. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91, 552–555 http://dx.doi.org/10.1007/s00114-004-0566-0
Rodríguez N, Rubiano ME. 2002. Aislamiento e identificación de hongos de fosfato aislados de cultivos de arroz y evaluación del p H y en concentraciones de sacarosa y cloruro de sodio sobre su actividad solubilizadora. Trabajo de Grado. Pontificia Universidad Javeriana. Bogotá
Roos W, Luckner M. 1984. Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. Journal of General Microbiology 130, 1007-1014. http://dx.doi.org/10.1099/00221287-130-4-1007
Salkowski E. 1889. Ueber Zuckerbildung und andere Fermentation in der Hefe. I. Zeitschrift für Physiologische Chemie 13, 506-538
Scervino M, Prieto M, Ivana M, Recchi M, Sarmiento N, Godeas A. 2010. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils 46, 755–763. http://dx.doi.org/10.1007/s00374-010-0482-8
Silvieira MLA, Alleonl LRF, Guilherme LRG. 2003. Biosolids and heavy metals in soils. Scientia Agricola 60(4), 793-806.
Sridevi M, Mallaiah KV. 2009. Phosphate solubilization by Rhizobium strains. Indian Journal of Microbiology 49, 98-102 http://dx.doi.org/10.1007/s12088-009-0005-1
Sundara R, Sinha M. 1963. Organisms phosphate solubilizers in soil. The Indian Journal of Agricultural Sciences 33, 272-278.
Torres-Rubio MG, Valencia-Plata SA. Bernal-Castillo J, Martinez-Nieto P. 2000. Isolation of enterobacteria, Azotobacter sp. and Pseudomonas sp. Producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Revista Latinoamericana de Microbiología 42, 171–176.
Thomas GV, Shantaram MV, Saraswathy N. 1985. Occurrence and activity of phosphate-solubilizing fungi from coconut plantation soils. Plant Soil 87, 357-364. http://dx.doi.org/10.1007/BF02181903
Valencia H, Sánchez J, Valero N. 2005. Producción de ácido indolacético por microorganismos solubilizadores de fosfato presents en la rizósfera de Espeletia grandiflora y Calamagrostis effusa del Páramo el Granizo, 177-193. In: Bonilla M, Ed. Estrategias adaptativas de plantas de páramo y del bosque altoandino en la cordillera oriental de Colombia. Unibiblos, Bogotá.
Valencia H, Sánchez J, Vera D, Valero N, Cepeda M. 2007. Microorganismos solubilizadores de fosfatos y bacterias fijadoras de nitrógeno en páramos y región cálida tropical (Colombia), 169-183. In: Sánchez J, Ed. Potencial biotecnológico de microorganismos en ecosistemas naturales y agroecosistemas. Universidad Nacional de Colombia, Bogotá.
Valero N. 2003. Potencial biofertilizante de bacterias diazotrofas y solubilizadoras de fosfatos asociadas al cultivo de arroz (Oryza sativa L.). [Tesis de maestría] Maestría Interfacultades en Microbiología, Universidad Nacional de Colombia.
Valero N. 2007. Determinación del valor fertilizante de microorganismos solubilizadores de fosfato en cultivos de arroz, 169-183. In: Sánchez J, Ed. Potencial biotecnológico de microorganismos en ecosistemas naturales y agroecosistemas. Universidad Nacional de Colombia, Bogotá.
Venkateswardu B, Rao AV, Raina P. 1984. Evaluation of phosphorus solubilization by microorganisms isolated from Aridisols. Journal of the Indian Society of Soil Science 32, 273-277.
Velasquez JA, Beltran D, Padilla L, Giraldo G. 2010. Obtencion de ácido cítrico por fermentacion con Aspergillus niger utilizando sustrato de platano dominico harton (musa aab simmonds) maduro. Revista Tumbaga 5, 135-147
Vera D, Perez H, Valencia H. 2002.Aislamiento de hongos solubilizadores de fosfatos de la rizosfera de Arazá (Eugenia stipitata, Myrtaceae). Acta Biologica Colombiana 7(1), 33-40.
Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586.
Vinale F, Sivasithamparamb K, Ghisalbertic M L, Marra R, Woo S L, Lorito M. 2008. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry 40, 1-10. http://dx.doi.org/10.1016/j.soilbio.2007.07.002
Whitelaw MA. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy 69, 99-151. http://dx.doi.org/10.1016/S0065-2113(08)60948-7
Useche Y. 2003. Contribución al conocimiento de bacterias y hongos solubilizadores de fosfato bajo tres usos de suelo en el sur del Trapecio Amazónico. Trabajo de Grado. Universidad Nacional de Colombia, Facultad de Ciencias. Departamento de Biología. Bogotá.
Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W. 2009. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Applied Biochemistry and Biotechnology 159, 330-342. http://dx.doi.org/10.1007/s12010-009-8590-3
Yedidia I, Benhamou N, Chet I. 1999. Induction of defence responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology 65, 1061-1070.
Zambrano C. 1989. Efecto de la concentración de inóculo de Trichoderma harzianum sobre el desarrollo de Macrophomina phaseolina, 56. In: Resúmenes XI Seminario Nacional de Fitopatología. Sociedad Venezolana de Fitopatología. 19 al 23 de Noviembre 1989. Trujillo, Venezuela.
Zhang F, Zhu Z, Yang X. 2013. Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Applied Soil Ecology 72, 41-48. http://dx.doi.org/10.1016/j.apsoil.2013.05.016
Zúñiga D, Becerra E. 2014. Effectiveness of Trichoderma spp. at controlling Fusarium oxysporum sp. phaseoli in bean plants at a greenhouse scale. International Journal of Biosciences 5(9), 21-36. http://dx.doi.org/10.12692/ijb/5.9.21-36
Zúñiga-Silgado D. 2016. In vitro selection of phosphate solubilizing strains of Trichoderma spp. International Journal of Biosciences 8 (4), 124-144 http://dx.doi.org/10.12692/ijb/8.4.124-144
Dorcas Zúñiga-Silgado , León Darío Vélez Vargas (2016), In vitro selection of Strains of Trichoderma spp.with phosphate solubilizing and indole acetic acid producing capacities; IJB, V8, N5, May, P153-174
https://innspub.net/in-vitro-selection-of-strains-of-trichoderma-spp-with-phosphate-solubilizing-and-indole-acetic-acid-producing-capacities/
Copyright © 2016
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0