Evaluation and selection of synthetic hexaploid wheat and their derivatives at seedling stage targeted for salt tolerance

Paper Details

Research Paper 01/07/2016
Views (662)
current_issue_feature_image
publication_file

Evaluation and selection of synthetic hexaploid wheat and their derivatives at seedling stage targeted for salt tolerance

Rabia Masood, Niaz Ali, Azhar Hussain Shah, Fouzia Bibi, Faiza Masood, Jackie Rudd, Mujeeb Kazi
Int. J. Biosci. 9(1), 435-442, July 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

Novel sources of salt tolerance need to be identified for the development of crop on saline prone areas in order to meet the food demands of increasing human population. We have evaluated 136 Hexaploid synthetic wheat and their derivatives with local checks varieties at seedling stage for salt tolerance in petridishes at 0, 75 and 150mM NaCl solution using different physiological indices like shoot and root length stress tolerance index, shoot fresh and dry weight tolerance index and root dry weight tolerance index. The collected data were analyzed by statistical techniques as analysis of variance, descriptive statistics, and correlation analysis to evaluate the variations among the studied germplasm against salt tolerance. Mean square values by the analysis of variance and interaction mean values between the genotypes and traits expressed significant variation among all the traits. Highly significant and positive correlation was found between shoot and root length, shoot fresh weight, shoot and root dry weight. Salt tolerant genotypes with accession number 23, 897, 892, 80, 3, 44, , 50, 33, 433, 605, 52, 551, 5, 593, 20, 866, 53, 906, Pasban-90, Shorawaki, and S-24 has been identified which performed best and expressed higher plant fresh/dry biomass and root/shoot length and resulted lower biomass and growth reduction when exposed to 75 and 150mM NaCl with Stress tolerance index (STI) ranges from 70-100% . In order validate these findings the selected lines will be further investigated at the maturity stage in saline field condition for agronomic and yield related traits as thousand kernel weight and harvest index.

Ahmadi SH,  Ardekani JN. 2006. The effect of water salinity on growth and physiological stages of eight canola (Brassica napus) cultivars. Irrig. Sci 25, 11-20.

Ali Z, Salam A, Azhar FM, Khan IA. 2007. Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. South Afr. J. Bot 73, 70-75.

Appels R, Lagudah E. 1990. Manipulation of chromosomal segments from wild wheat for the improvement of bread wheat. Aust. J. Plant Physiol 17, 253-266.

Ashraf M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199, 361-376. DOI: 10.1007/s00271-006-0030-3.

Dreccer MF, Ogbonnaya FC, Borgognone G. 2004. Sodium exclusion inprimary synthetic wheats. In: Proc. XI Wheat Breeding Assembly pp. 118-121.

GOP. 2016. Economic survey of Pakistan.

Lauchli A, Luttge U. 2004. Salinity: Environment  –Plants– Molecules. Amsterdam, the Netherlands: Springer.

Meneguzzo S, Navari-Izzo F, Izzo R. 2000. NaCl effects on water relations and accumulation of mineral nutrients inshoots, roots and cell sap of wheat seedlings. J. Plant Physiol 156, 711-716. Doi:10. 1016/S0176-1617(00)80236-9.

Munns R, James R A, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57, 1025-1043.

Munns R, James RA. 2003. Screening methods for salt tolerance: a case study with tetraploid wheat. Plant and Soil 253, 201-218.

Munns R. 2007. Utilizing genetic resources to enhance productivity of salt–prone land. CAB Rev.: Perspectives in Agric. Vet. Sci. Nutr. Nat. Res 2, No. 009.

Institute SAS. 2003. Release 9.1. SAS Institute Inc., Cary NC.

Trethowan R, van Ginkel M. 2009. Synthetic wheat an emerging genetic resource.  p. 369-385. In:  B. Carver (ed.) Wheat science and trade. Wiley Blackwell, Ames, IA. Doi/10.1002/ 9780813818832.ch16.

Zhang J, Flowers TJ, Wang S. 2010. Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326, 45-60. DOI: 10.1007/s11104-009-0076-0.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.