Differences in the Development of Blast Disease (Pyricularia oryzae) in Several Local Upland Rice Cultivars in Southeast Sulawesi, Indonesia

Paper Details

Research Paper 01/04/2021
Views (748)
current_issue_feature_image
publication_file

Differences in the Development of Blast Disease (Pyricularia oryzae) in Several Local Upland Rice Cultivars in Southeast Sulawesi, Indonesia

Teguh Wijayanto, Muh. Fadlan Tamrin, Asniah, Ni Wayan S. Suliartini, Andi Khaeruni
Int. J. Biosci. 18(4), 1-7, April 2021.
Copyright Statement: Copyright 2021; The Author(s).
License: CC BY-NC 4.0

Abstract

One of the important diseases in rice (Oryza sativa L.) is the blast disease (Pyricularia oryzae), which greatly affects the quality and quantity of rice production. This study aimed to determine the differences in the development of blast disease, as well as to obtain local upland rice cultivars in Southeast Sulawesi which had the lowest development of blast disease, in two different planting locations. This research was conducted in Lamomea Village, Konda District, Konawe Selatan Regency and Kambu Village, Kendari City. The research was arranged in a Complete Randomized Block Design (CRBD) consisting of 10 local upland rice cultivars of Southeast Sulawesi, namely: Tinangge (G1), Konkep (G2), Loiyo putih (G3), Waburi-buri (G4), Momea (G5), Wangkariri (G6), Bombana (G7), Wakawondu (G8), Wagamba (G9) and Bakala (G10), which were repeated 3 times. Six plant samples were taken from each plot. The variable observed was the development of blast disease, which consisted of disease severity, disease infection rate and disease progression curve. The results showed that from the planting location in Lamomea Village, the cultivar with the lowest disease progression was Konkep cultivar (G2) with disease severity of 12.59%, infection rate of 2.37% and disease progression curve of 35.59%. For cropping in Kambu Village, the cultivar with the lowest disease progression, namely the Momea cultivar (G5) had the lowest disease severity at 33.33%, the infection rate was 6.52% and the disease progression curve was 80.78%, which was lower than the other cultivars. Results of the study showed that there was an opportunity to obtain local upland rice cultivars that were relatively resistant to blast disease.

Agrios. 2005. Plant Pathology. Fifth Edition Elsevier Academic Press, New York.

Badan Pusat Statistik Sulawesi Tenggara. 2016. Produksi Padi gogo dalam angka Badan Pusat Statistik Sulawesi Tenggara. Kendari.

Fukuta Y, Xu D, Kobayashi N, Jeanie M, Yanoria T, Hairmansis A, Hayashi N. 2009. Genetic characterization of universal differential varieties for blast resistance developed under the IRRI-Japan Collaborative Research Project using DNA markers in rice (Oryza sativa L.). Advances in Genetics, Genomics and Control of Rice Blast Disease, p 325-335. https://link.springer.com/chapter/10.1007/978-1-4020-9500-9_32

Gilligan CA. 1990. Comparison of disease progress curves. New Phytologist 115, p 223–242. https://doi.org/10.1111/j.1469-8137.1990.tb00448.x

Hidayat YS, Nurdin M, Dan Suskandini RD. 2014. Penggunaan Trichoderma sp. Sebagai Agensia Pengendalian Terhadap Pyricularia Oryzae Cav. Penyebab Blas Pada Padi. Jurnal Agrotek Tropika  2(3), 414 – 419.

IRRI. 1996. Standard Evaluation System for Rice. Los Banos (PH): IRRI., p 52.

Nandy S, Manda N, Bhowmik PK, Khan MA, Basu SK. 2010. Sustainable management of rice blast (Magnaporthe grisea (Habbert) Bar.): 50 years of research progress in moleculer biology. In Arya and A.E. Parello (Eds.) Management of fungal plant pathogens. CAB International, p 92–106.

Norsalis E. 2011. Padi gogo dan padi sawah. Akses: 07 Juni 2019. http://repository.usu.ac.id/bitstream/123456789/17659/4/chapter%2011.pdf.

Ou SH. 1985. Rice blast disease. (2nd ed). Commonwealth Mycological Institute Kew, Surrey. England, p 380

Reskiyanti. 2009. Konservasi dan Pengembangan Sumberdaya Genetik Padi Untuk Kesejahteraan Petani. Makalah Disampaikan pada Pekan Budaya Padi di Subang Jawa Barat.

Santoso dan Nasution A. 2008. Pengendalian penyakit blas dan penyakit cendawan lainnya. Buku Padi 2. hlm. 531-563. Dalam Darajat AA, Setyono A, dan Makarim AK, dan Hasanuddin A. (Ed.). Padi Inovasi Teknologi. Balai Besar Penelitian Tanaman Padi, Sukamandi. Badan Penelitian dan Pengembangan Pertanian.

Sudir, Nasution A, Santoso dan Nuryanto B. 2014. Penyakit blas Pyricularia grisea pada tanaman padi dan strategi pengendaliannya. Iptek Tanaman Pangan 9(2), 85-96.

Sumarno dan Hidayat JR. 2007. Perluasan areal padi gogo sebagai pilihan untuk mendukung ketahanan pangan nasional. Buletin IPTEK Tanaman Pangan 2(1), 26-40.

Susanto A, Sudharto PS, Purba RY. 2005. Enhancing biological control of basal stem rot (Ganoderma boninense) in oil palm plantations. Mycopathologia 159, 153–157. https://doi.org/10.1007/s11046-004-4438-0

Taufik M. 2011. Evaluasi ketahanan padi gogo lokal  terhadap penyakit blas (Pyricularia oryzae) di lapang. Agriplus 21(1), 68–74.

Wang CJ, Guo J, Huang SH, Yang DC, Tian X, Zhang H. 2014. Allele mining of rice blast resistance genes at AC134922 locus. Biochemical and Biophysical Research Communications 446(4), 1085-1090. https://doi.org/10.1016/j.bbrc.2014.03.056

Yulianto dan Subiharta. 2009. Ketahanan padi varietas unggul baru terhadap penyakit blas (Magnaporthe gricea (T.T. Hebert) M.E. Barr) di lahan sawah tadah hujan Kabupaten Pemalang. Prosiding Seminar Ilmiah Nasional. BBP2TP dan UPN.

Yulianto. 2017. Pengendalian Penyakit Blas Secara Terpadu pada Tanaman Padi. Iptek Tanaman Pangan 12(1), 25-34.

Related Articles

Evaluation of the impact of floristic diversity on the productivity of cocoa-based agroforestry systems in the new cocoa production area: The case of the Biankouma department (Western Côte d’Ivoire)

N'gouran Kobenan Pierre, Zanh Golou Gizele*, Kouadio Kayeli Anaïs Laurence, Kouakou Akoua Tamia Madeleine, N'gou Kessi Abel, Barima Yao Sadaiou Sabas, Int. J. Biosci. 28(1), 44-55, January 2026.

Utilization of locally sourced feed ingredients and their influence on the growth performance of broiler chickens (Gallus gallus domesticus): A study in support of the school’s chicken multiplier project

Roel T. Calagui*, Maricel F. Campańano, Joe Hmer Kyle T. Acorda, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Jojo D. Cauilan, John Michael U. Tabil, Int. J. Biosci. 28(1), 35-43, January 2026.

Knowledge, attitudes, and practices regarding malaria prevention and the use of long lasting insecticidal nets after mass distribution campaigns in northern Côte d’Ivoire

Donatié Serge Touré, Konan Fabrice Assouho*, Konan Rodolphe Mardoché Azongnibo, Ibrahim Kounady Ouattara, Foungoye Allassane Ouattara, Mamadou Doumbia, Int. J. Biosci. 28(1), 28-34, January 2026.

Characterization of stands and evaluation of carbon sequestration capacity of shea parklands (Vitellaria paradoxa C. F. Gaertn., Sapotaceae) in the departments of Dabakala and Kong, Ivory Coast

Konan Nicolas Kouamé*, Lacina Fanlégué Coulibaly, Mohamed Sahabane Traoré, Eric-Blanchard Zadjéhi Koffi, Nafan Diarrassouba, Int. J. Biosci. 28(1), 1-15, January 2026.

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.