An Assessment of the Control and Monitoring Functionalities of a Developed Small-Scale Aquaculture System

Paper Details

Research Paper 09/10/2022
Views (1300)
current_issue_feature_image
publication_file

An Assessment of the Control and Monitoring Functionalities of a Developed Small-Scale Aquaculture System

Jamali A. Nagamora, Seth Courage H. Angeles, Rosalie Vertudes, Jeffrey Ken B. Balangao, Abdul Halil S. Abdullah II
Int. J. Biosci. 21(4), 89-100, October 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

In smart aquaculture, devices and technologies are integrated to facilitate automated operations, manage facilities and machinery and maintain water quality parameters. This study aimed at assessing control and monitoring functionalities in an automated small-scale aquaculture system. In this work, the requirements to sustain aquaculture systems such as light intensity, humidity, water temperature and dissolved oxygen have been considered in the selection of appropriate sensors for monitoring and control. The controls of the system were able to maintain proper light intensity, water temperature, and humidity. Water aeration also provided enough dissolved oxygen into the system. The outcome of this work indicated the performance and testing of the different sensors for monitoring and controlling parameters to sustain the automated aquaculture system. It can be recommended to include in the study other important parameters such as pH, oxidation-reduction potential, and salinity, among others. It can be recommended to provide more water heaters for fast water heating in the system. And if the system is being applied to a naturally hot area, a cooling study or assessment may also be made.

Andini M, Dewi OC, Marwati A. 2021. Urban Farming During the Pandemic and Its Effect on Everyday Life. International Journal of Built Environment and Scientific Research 5(1), 51-62. https://doi.org/10.24853/ijbesr.5.1.51-62

Sroka W, Bojarszczuk J, Satoła Ł, Szczepańska B, Sulewski P, Lisek S, Luty L, Zioło M. 2021. Understanding residents’ acceptance of professional urban and peri-urban farming: A socio-economic study in Polish metropolitan areas. Land Use Policy 109, 105599. https://doi.org/10.1016/j.landusepol.2021.105599

Atmaja T, Yanagihara M, Fukushi K. 2020. Geospatial Valuation of Urban Farming in Improving Cities Resilience: A Case of Malang City, Indonesia. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 43, 107-113. https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-107-2020

Ng AK, Mahkeswaran R. 2021. Emerging and disruptive technologies for urban farming: A review and assessment. Journal of physics: Conference series 2003(1), 012008. https://doi.org/10.1088/1742-6596/2003/1/012008

Gulyas BZ, Edmondson JL. 2021. Increasing city resilience through urban agriculture: Challenges and solutions in the Global North. Sustainability 13(3), 1465. https://doi.org/10.3390/su13031465

Langemeyer J, Madrid-Lopez C, Beltran AM, Mendez GV. 2021. Urban agriculture—A necessary pathway towards urban resilience and global sustainability?. Landscape and Urban Planning 210, 104055. https://doi.org/10.1016/j.landurbplan.2021.104055

Komalawati K, Romdon AS, Hartono FR, Murtiati S, Arianti FD, Hariyanto W, Oelviani R. 2022. Urban Farming as a Resilient Strategy During COVID-19 Pandemic. Journal of Resilient Economies 2(1), 38-48. https://doi.org/10.25120/jre.2.1.2022.3910

Sia A, Tan PY, Wong JCM, Araib S, Ang WF, Er KBH. 2022. The impact of gardening on mental resilience in times of stress: A case study during the COVID-19 pandemic in Singapore. Urban Forestry & Urban Greening 68, 127448. https://doi.org/10.1016/j.ufug.2021.127448

Nagamora JA, Carpio JMA, Abdullah II AHS, Pallugna RC, Balangao JKB, Recente CP. 2022. DESIGN OF AN IOT-BASED SMALL SCALE INDOOR HYDROPONICS WITH GEO-SOLAR SYSTEM. International Journal of Electrical Engineering and Technology 13(5), 51-60. https://doi.org/10.17605/OSF.IO/MDC6

Hu Z, Zhang Y, Zhao Y, Xie M, Zhong J, Tu Z, Liu J. 2019. A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. Sensors 19(6), 1420. https://doi.org/10.3390/s19061420

Eze E, Ajmal T. 2020. Dissolved oxygen forecasting in aquaculture: a hybrid model approach. Applied Sciences 10(20), 7079. https://doi.org/10.3390/app10207079

Vo TTE, Ko H, Huh JH, Kim Y. 2021. Overview of smart aquaculture system: Focusing on applications of machine learning and computer vision. Electronics 10(22), 2882. https://doi.org/10.3390/electronics10222882

Rashid M, Nayan AA, Rahman M, Simi SA, Saha J, Kibria MG. 2021. IoT based smart water quality prediction for biofloc aquaculture. International Journal of Advanced Computer Science and Applications 12(6), 56-62. https://doi.org/10.48550/arXiv.2208.08866

Sharma D, Kumar R. 2021. Smart Aquaculture: Integration of Sensors, Biosensors, and Artificial Intelligence. In Biosensors in Agriculture: Recent Trends and Future Perspectives (p 455-464). Springer, Cham. https://doi.org/10.1007/978-3-030-66165-6_21

Imai T, Arai K, Kobayashi T. 2019. Smart aquaculture system: A remote feeding system with smartphones. In 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT) (93-96 p). IEEE. https://doi.org/10.1109/ISCE.2019.8901026

Kassem T, Shahrour I, El Khattabi J, Raslan A. 2021. Smart and Sustainable Aquaculture Farms. Sustainability 13, 685. https://doi.org/10.3390/su131910685

Related Articles

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.