Effect of arbuscular mycorrhizal fungi inoculation on the antioxidant property and volatile organic compounds emission by Cymbopogon citratus L.
Paper Details
Effect of arbuscular mycorrhizal fungi inoculation on the antioxidant property and volatile organic compounds emission by Cymbopogon citratus L.
Abstract
Arbuscular mycorrhizal (AM) fungi influence host plants in the synthesis of many secondary metabolites with pharmaceutical importance. The effect of AM fungi on metabolite production in the Cymbopogon citratus is less studied. The present study investigates the changes influenced by the two AM fungi Glomus mosseae and Glomus fasciculatum on the chemical composition of C. citratus. The bioactive compounds produced in treated and control plants were tested for antioxidant activity and further characterized by Gas Chromatography-Mass Spectrometry, High-Performance Liquid Chromatography techniques. It was found that AM fungal inoculation in mixed culture conditions showed increased radical scavenging activity with minimum IC50 value of 19.08µg/mL and compound production at 90 days of treatment. In the treated plant extract the metabolites were present at a higher concentration as compared with control plants. The GC-MS results are supported by the HPLC spectrum which showed a similar outcome. This study proves that inoculation of AM fungi in combination is more beneficial in influencing the production of bioactive compounds than the pure culture.
Anna Fontana, Michael Reichelt, Stefan Hempel, Jonathan Gershenzon, Sybille B. Unsicker. 2009. The Effects of Arbuscular Mycorrhizal Fungi on Direct and Indirect Defense Metabolites of Plantago lanceolata L.. The Journal of Chemical Ecology 35, 833-843.
Asensio D, Rapparini F, Penuelas J. 2012. AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77, 149-161.
Berger F, Gutjahr C. 2021. Factors affecting plant responsiveness to arbuscular mycorrhiza. Current Opinion in Plant Biology 59, 101994.
Boeira CP, Piovesan N, Flores DCB, Soquetta MB, Lucas BN, Heck R, Tand Terra NN. 2020. Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage. Food chemistry 319, 126553.
Bonfante P, Genre A. 2015. Arbuscular mycorrhizal dialogues: Do you speak Plantish’or ‘fungish. Trends in plant science 20(3), 150-154.
Borges PH, Pedreiro S, Baptista SJ, Geraldes CF, Batista MT, Silva MM, Figueirinha A. 2021. Inhibition of α-glucosidase by flavonoids of Cymbopogon citratus (DC) Stapf. Journal of Ethnopharmacology 280, 114470.
Carballo T, Gil MV, Gómez X, González-Andrés F, Morán A. Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation. 2008 Nov 19(6), 815-30.
Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. 2018. Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Frontiers in Plant Science 9, 1270.
Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, He C. 2013. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumbers subjected to low-temperature stress. Scientia Horticulturae 160, 222-229.
Cherian T, Ali K, Saquib Q, Faisal M, Wahab R, Musarrat J. 2020. Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: Novel prospects as antibacterial and antibiofilm agents. Biomolecules 10(2), 169.
Choi J, Summers W, Paszkowski U. 2018. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annual Review of Phytopathology 56, 135-160.
Duc NH, Vo AT, Haddidi I, Daood H, Posta K. 2021. Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Frontiers in Plant Science 11, 612299.
Ghadiri M, Hemmati A, Nakhjiri AT, Shirazian S. 2020. Modelling tyramine extraction from wastewater using a non-dispersive solvent extraction process. Environmental Science and Pollution Research 27(31), 39068-39076.
Gissawong N, Boonchiangma S, Mukdasai S, Srijaranai S. 2019. Vesicular supramolecular solvent-based microextraction followed by high performance liquid chromatographic analysis of tetracyclines. Talanta 200, 203-211.
Gutjahr C, Parniske M. 2013. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual review of cell and developmental biology 29, 593-617.
Hacke ACM, Miyoshi E, Marques JA, Pereira RP. 2020. Anxiolytic properties of Cymbopogon citratus (DC.) stapf extract, essential oil and its constituents in zebrafish (Danio rerio). Journal of Ethnopharmacology 260, 113036.
Harrier LA, Watson CA. 2004. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil‐borne pathogens in organic and/or other sustainable farming systems. Pest Management Science: formerly Pesticide Science 60(2), 149-157.
Harrison MJ. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol 59, 19-42.
Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P. 2015. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25(5), 359-376.
Ichikawa K, Sasada R, Chiba K, Gotoh H. 2019. Effect of side chain functional groups on the DPPH radical scavenging activity of bisabolane-type phenols. Antioxidants 8(3), 65.
Ito S. 1993. High-performance liquid chromatography (HPLC) analysis of eu-and pheomelanin in melanogenesis control. Journal of Investigative Dermatology 100(2), S166-71.
Karagiannidis N, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C. 2011. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Scientia horticulturae 129(2), 329-334.
Kumar D. 2016. Nuclear magnetic resonance (NMR) spectroscopy for metabolic profiling of medicinal plants and their products. Critical reviews in analytical chemistry 46(5), 400-12.
Kumar A, Sharma S, Mishra S. 2010. Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. Journal of Plant Growth Regulation 29(3), 297-306.
Kumar S, Arora N, Upadhyay H. 2021. Arbuscular mycorrhizal fungi: Source of secondary metabolite production in medicinal plants. In New and Future Developments in Microbial Biotechnology and Bioengineering Elsevier 229(3), 155-164.
Maatta KR, Kamal-Eldin A, Torronen AR. High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. Journal of Agricultural and Food Chemistry 51(23), 6736-44.
Majewska E, Kozlowska M, Gruszczynska-Sekowska E, Kowalska D, Tarnowska K. 2019. Lemongrass (Cymbopogon citratus) essential oil: extraction, composition, bioactivity and uses for food preservation-a review. Polish Journal of Food and Nutrition Sciences 69(4).
Moustakas M, Bayçu G, Sperdouli I, Eroğlu H, Eleftheriou EP. 2020. Arbuscular mycorrhizal symbiosis enhances photosynthesis in the medicinal herb Salvia fruticosa by improving photosystem II photochemistry. Plants 9(8), 962.
Karagiannidis N, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C. 2011. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants, Scientia Horticulturae 129(2), 329-334.
Oladeji OS, Adelowo FE, Ayodele DT, Odelade KA. 2019. Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Scientific African 6, e00137.
Pandey DK, Kaur P, Dey A. 2018. Arbuscular mycorrhizal fungi: Effects on secondary metabolite production in medicinal plants. In Fungi and their role in sustainable development Springer: Current perspectives 49(3), 507-538.
Patiño-Ruiz D, Sánchez-Botero L, Tejeda-Benitez L, Hinestroza J, Herrera A. 2020. Green synthesis of iron oxide nanoparticles using Cymbopogon citratus extract and sodium carbonate salt: Nanotoxicological considerations for potential environmental applications. Environmental Nanotechnology, Monitoring and Management 14, 100377.
Rui-Ting SUN, Zhang ZZ, Nong ZHOU, Srivastava AK, Kamil KUČA, Abd-Allah EF, Qiang-Sheng WU. 2021. A review of the interaction of medicinal plants and arbuscular mycorrhizal fungi in the rhizosphere. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(3), 12454-12454.
Shi L, Bucknall MP, Young TL, Zhang M, Hu L, Bing J, Ho-Baillie AW. 2020. Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368(6497), eaba2412.
Smith SE, Smith FA, Jakobsen I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162(2), 511-524.
Song J, Han Y, Bai B, Jin S, He Q, Ren J. 2019. Diversity of arbuscular mycorrhizal fungi in rhizosphere soils of the Chinese medicinal herb Sophora flavescens Ait. Soil and Tillage Research 195, 104423.
Sousa R, Figueirinha A, Batista MT, Pina ME. 2021. Formulation effects in the antioxidant activity of extract from the leaves of Cymbopogon citratus (Dc) stapf. Molecules 26(15), 4518.
Subramaniam G, Yew XY, Sivasamugham LA. 2020. Antibacterial activity of Cymbopogon citratus against clinically important bacteria. South African Journal of Chemical Engineering 34, 26-30.
Trang DT, Hoang TKV, Nguyen TTM, Van Cuong P, Dang NH, Dang HD, Dat NT. 2020. Essential oils of lemongrass (Cymbopogon citratus Stapf) induces apoptosis and cell cycle arrest in A549 lung cancer cells. BioMed Research International 3(3), 6-18.
Valková V, Ďúranová H, Galovičová L, Borotová P, Vukovic NL, Vukic M, Kačániová M. 2022. Cymbopogon citratus Essential Oil: Its Application as an Antimicrobial Agent in Food Preservation. Agronomy 12(1), 155.
Wesołowska A, Jadczak P, Kulpa D, Przewodowski W. 2019. Gas chromatography-mass spectrometry (GC-MS) analysis of essential oils from AgNPs and AuNPs elicited Lavandula angustifolia in vitro cultures. Molecules. 24(3), 606.
Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. 2019. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist 223(3), 1127-1142.
Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K. 2015. Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant and Soil 390(1), 129-142.
Veena Adishesha, KM. Srinivasa Murthy (2022), Effect of arbuscular mycorrhizal fungi inoculation on the antioxidant property and volatile organic compounds emission by Cymbopogon citratus L.; IJB, V21, N6, December, P286-297
https://innspub.net/effect-of-arbuscular-mycorrhizal-fungi-inoculation-on-the-antioxidant-property-and-volatile-organic-compounds-emission-by-cymbopogon-citratus-l/
Copyright © 2022
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0