Effect of polyethylene glycol on the amount of chlorophyll a, chlorophyll b and total leaf of sugar beet genotypes

Paper Details

Research Paper 01/01/2014
Views (652)
current_issue_feature_image
publication_file

Effect of polyethylene glycol on the amount of chlorophyll a, chlorophyll b and total leaf of sugar beet genotypes

Mojtaba Ghasemi Fahim, Bahram Mirzamasoumzadeh, Babak Ahadzadeh
J. Biodiv. & Environ. Sci. 4(1), 233-237, January 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Photosynthesis was one of important physiological processes in the plant. Water shortages would reduce its intensity. Photosynthesis persistency and maintaining leaf chlorophyll under stress conditions were physiological features of stress resistance. So, this research was performed on 2012 at greenhouse in order to investigate the effect of polyethylene glycol on chlorophyll a, b and Total on three sugar beet genotypes. Experiment was done as Two-factor factorial in form of randomized complete block design with three replications. Factor a (stress level: 1 normal irrigation, 2: Polyethylene glycol 6000 with 30% concentration) and factor b (genotypes) was performed. Results showed that the factors a and b were not significant in All traits. But interaction between factors level a × b showed significant differences at the 5% level the two characters of chlorophyll a and total chlorophyll. Bilateral comparison showed that the combination (normal × genotype 7233-P29) with an average of 6.36 had highest levels of chlorophyll a and combination (PEG 6000 × genotype- 7233-P29) with an average of 3.79 had lowest level. The composition of the total chlorophyll (PEG 6000 × genotype Jolge and normal × genotype 7233-P29), respectively, with a mean of 7.83 and 7.93 had highest Total chlorophyll and combination (PEG 6000 × genotype-7233-P29) with an average of 5.44 had lowest amount. Rate of chlorophyll a and b are increased with stress intensity, but this issue was not true about total chlorophyll and with increasing stress intensity, total chlorophyll was decreased.

AbdollahianNoghabi M. 1999.Ecophysiology of sugar beet cultivars and Weed species subjected to water deficiency stress. Ph.D. Thsis, University of Reading.

Cook DR, Scott C. 1998. Sugar from Science to Practice. Translation: Faculty Improvement Institute Beet Seed. Publications Produced Sugar Beet Seed Improvement Institute, p. 731.

Cooke DA, Scott RK. 1993 The sugar Beet crop science into practice. London, new York chapmon and Hall. 675:456 -469.

Fischr RA, Wood JT. 1989. Drought resistance in spring wheat cultivar, yield associations with morpho-phisiological traits. Australian Journal Agricultural 30, 1001-1020.

Gusegnova IM, Suleymanov S, Aliyev JA. 2006. Protein composition and native state of pigments of thylakoid membrane of Wheat genotypes differently tolerant to water stress. Biochemistry 71. 223-228.

Hardgree SP, Emmerich WE. 1990. The effect of polyethylene glycol exclusion on the water potential of solution-saturate filter paper. Plant Physiology 92, 462-466.

Hauny B. 2001. Involvement of antioxidants and lipid peroxidantion in the adaptation two season grasses to localized drought stress. Environmental and Experimental Botany 45,105-114.

Kafi M, Mahdavi-Damghani A. 2002. Resistance mechanisms of plants to environmental stresses (translation). University of Mashhad.

Kaufman MR, Eckard AN, 1971. Evaluation of stress control by polyethylene glycol byanalysis of guttation. Plant Physiological 47, 453-456.

Madhaj  A,  Fathi  Gh.  2008.  Crop  Physiology. Islamic Azad University Press. p. 128.

Sairam RK, Deshmukh PS, Saxna DC. 1998. Role of antioxidant systems in Wheat genotype tolerance to water stress. Biologia Plantrum 41(3), 387-394.

Wittenmayer L, Merbach W. 2005. Plant responses to drought and phosphorus deficiency: Contribution of phytohormones in root- related processes. Journal of Plant Nutrition and Soil Science 168, 531- 540.

Related Articles

Phytochemical composition, miticidal and pediculicidal efficacy of ethanolic leaf extracts of neem (Azadirachta indica) and tobacco (Nicotiana tabacum) against Pterolichus obtusus and Goniodes dissimilis

Roel T. Calagui*, Sherwin L. Alota, Jhaysel G. Rumbaoa, Glydel Joy T. Ragutero, Kyrone D. Ancheta, Lovely Grace V. Jacinto, Kjelle Cristlea P. Cabang, Bryan Jerome R. Bassig, J. Biodiv. & Environ. Sci. 28(1), 68-77, January 2026.

Mangroves under pressure: Local threats and management realities in Malamawi Island, Basilan, Philippines

Norvie Semine*, Jill Ruby Parmisana, Ashikeen Tampipi, Chris Rey Lituanas, Wella Tatil, J. Biodiv. & Environ. Sci. 28(1), 56-67, January 2026.

Institutional e-waste management: A knowledge, attitude, and perception study among the administrative staff at Mindanao State University, Iligan Institute of Technology, Philippines

Rezanne Mabyl Burlado*, Rodolfo II Romarate, Peter Suson, Wella Tatil, J. Biodiv. & Environ. Sci. 28(1), 40-55, January 2026.

Biomass and carbon stocks of fine litterfall and coarse woody debris in riparian and non-riparian tropical forests of Carmen, Bohol, Philippines

Carl Anthony G. Budiongan, Jairyl B. Oclarit*, Noel T. Lomosbog, J. Biodiv. & Environ. Sci. 28(1), 24-39, January 2026.

Microhabitat and seasonal influences on terrestrial mollusc communities in a reforested secondary forest, south-eastern Côte d’Ivoire

Amani N’dri Saint-Clair*, Pokou Konan Pacome, N'dri Kouassi Jerome, Otchoumou Atcho, J. Biodiv. & Environ. Sci. 28(1), 12-23, January 2026.

Assessing local responses to illegal, unreported, and unregulated (IUU) fishing in Olutanga, Zamboanga Sibugay: A baseline study using the I-FIT tool

Norlika D. Moti*, Judy Ann H. Fernandez, Angelica M. Darunday, Larry C. Herbito Jr., Armi G. Torres, J. Biodiv. & Environ. Sci. 28(1), 1-11, January 2026.

Parasites associated with bile contents of gall bladder from pigs in Oghara, Delta State, Nigeria

E. Lemy Ede*, D. A. Regina Orhewere, Asah Esegbuyota, Owhororo Ejiro, J. Biodiv. & Environ. Sci. 27(6), 91-98, December 2025.

Validation of satellite rainfall monitor (SRM) estimates against automated rain gauge observations in the Cagayan de Oro River Basin, Philippines

Elgin Joy N. Bonalos*, Johniel E. Babiera, Peter D. Suson, J. Biodiv. & Environ. Sci. 27(6), 79-90, December 2025.