Cassava green mite genetic diversity from three geographical sites in Kenya

Paper Details

Research Paper 01/10/2014
Views (530)
current_issue_feature_image
publication_file

Cassava green mite genetic diversity from three geographical sites in Kenya

D. L. Mutisya, E. M. El-Banhawy, C. P. M. Khamala, C. W. Kariuki, D. Odongo, A. Owiti
J. Biodiv. & Environ. Sci. 5(4), 504-510, October 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Cassava green mite (CGM) of the Mononychellus genus is an invasive species in Africa introduced from South America. Its genetic diversity over geographical localities has never been assessed in Kenya. We extracted DNA on internal transcribed spacer 2 (ITS2) and cytochrome oxidase subunit I (COI) and compared phylogenetic variations of CGM from the three sites in Kenya. We searched for species identify from the NCBI Genebank and found identical species nucleotide from Congo and Benin. Sequences from the three sites in Kenya were found to be 100% similar to CGM nucleotide from the Cong-Benin accessions (X79902.1) on ITS2 gene region. On COI, a 98-99% site sequences similarity was observed on M. progresivus accession X79901.1. The CGM race sequence from coastal Kenya was found to have the highest phylogenetic divergence from the Congo-Benin sequences. A small biogeographic genetic divergence was evident from the analyses among the sites. While the results confirm M. progresivus species identity in Kenya it also indicates intra-species phylogenetic variations on the COI gene region.

Bakker FM, Klein ME, Mesa NC, Braun AR. 1993. Saturation deficit tolerance spectra of phytophagous mites and their phytoseiid predators on cassava. Experimental an Applied Acarology, 17, 97-113.

Boudreaux HB. 1963. Biological aspects of some phytophagous mites. Annual Review of Entomology, 8, 137-154.

Food and Agriculture Organisation (FAO). 2007. Cassava production. www.fao.org/2007/y5548e/5548e.htm

Gutierrez J. 1987. The cassava green mite in Africa: one or two species (Acari: Tetranychidae). Experimental and Applied Acarology 3, 163-168.

Jones A. 2002. Implementing cassava green mite control in Mozambique. In: R. Hanna and M. Toko (eds).The proceedings of the 3rd international meeting of Africa-wide cassava Green Mite Biocontrol Project, 20 -22 February, Cotonou, Benin. 12-23.

Kanouh M, Tixier MS, Okassa M, Kreiter S. 2010. Phylogenetic and biogeographic analysis of the genus Phytoseiulus (Acari: Phytoseiidae). Zoologica Scripta, 39, 450–461.

Kariuki CW, Toko M, Hanna R, Ngari BMP. 2002. The progress of biological control of cassava green mite using Typhlodromalus aripo in Kenya. In: Proceedings of the Regional Meeting of the cassava Green mite Bio-control Project, 15-17 Nov. Dar es Salaam, Tanzania 27-41 (Eds. R. Hanna and M. Toko).

Knowles LL, Carstens BC. 2007. Delimiting species without monophyletic gene trees, Systematics Biology, 56(6), 887-895.

Malindagabo J, Birandano B. 1984. Some problems of cassava production in Rwanda. In: Integrated pest management of cassava green mite. Proceedings of a Regional Training Workshop in East Africa 30th April- May 4th 1984. 95-100

Megevand B, Yaninek JS, Friese DD. 1987. Classical biological control of cassava green mite. Symposium XI of the International Conference of Tropical Entomology. Africa–Wide Biological Programme of Cassava Pests. Insect science and its application, 18, 871-874.

Memarizadeh N, Ghadamyari M, Zamani P, Sajedi RH. 2013. Resistance mechanism to abamectin in Iranian populations of the two-spotted mite, Tetranychus urticae Koch. Acarologia, 53(3), 235-246.

Morrison DA. 2006. Multiple sequence alignment for phylogenetic purposes, Australian Systematic Botany, 19, 479-559.

Murega T N. 1989. Cross-breeding studies on the Cassava green mite Mononychellus sp (Acari: Tetranychidae) in East Africa. Experimental and Applied Acarology, 6, 85-90.

Navajas M, Gutierrez J, Bonato O, Bolland HR, Mapangou–Devassa S. 1994. Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari:Tetranychidae) using comparisons of mitochondria and nuclear ribosomal DNA sequences and cross breeding. Experimental and Applied Acarology, 18, 351-360.

Navajas M, Gutierrez J, Lagnel., J. 1996. Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bull of Entomol Res, 86, 407-417.

Nyiira ZM. 1972. Report on investigation on cassava mite, Mononychellus tanajoa (Bondar). Department of Agriculture, Kawanda Research Station. Unpublished annual report,14.

Nweke FI. 1996. Cassava: A cash crop in Africa. COSCA Working Paper No. 14. Collaborative study of cassava in Africa. International Institute of tropic Agriculture, Ibadan, Nigeria, 11.

Onzo A, Hanna R, Sabelis MW. 2012. The predatory Typhlodromalus aripo prefers green-mite induced plants oduors from pubescent cassava varieties. Experimental Applied Acarology, 58 (4), 359-370.

Yaninek JS, Hanna R. 2003. Cassava green mite in Africa: a unique example of successful classical biological control of a mite pest on a continental scale. Borgemeister, P, Borgemeister, C, Langewald, J (eds.), Biological control in IPM systems in Africa, CABI, 61-75.

Yaninek JS, Herren HR. 1988. Introduction and spread of the cassava green mite, Mononychellus tanajoa Bondar (Acari: Tetranychidae). A exotic pest in Africa and search for appropriate control mrethods. A review: Bulletin of Entomology Research, 79, 1-13.

Yaninek JS, Herren HR, Gutierrez HP. 1987. The biological basis for the seasonal out breaks of cassava green mites in Africa. Insect Science Application 8, (6) 861-865.

Related Articles

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.

Determinants of tree resource consumption around Mont Sangbé national park in western Côte d’Ivoire

Kouamé Christophe Koffi, Serge Cherry Piba, Kouakou Hilaire Bohoussou, Naomie Ouffoue, Alex Beda, J. Biodiv. & Environ. Sci. 27(1), 71-81, July 2025.