Development and reproductive performance of Amblyseius eharai (Acari: Phytoseiidae) fed on different stages of Tyrophagus sp. as a potential factitious prey for mass rearing
Paper Details
Development and reproductive performance of Amblyseius eharai (Acari: Phytoseiidae) fed on different stages of Tyrophagus sp. as a potential factitious prey for mass rearing
Abstract
Predatory mites belonging to the family Phytoseiidae are key biological control agents of pest mites and thrips in various agricultural systems. This study evaluated the developmental and reproductive performance of Amblyseius eharai when fed on different developmental stages (egg, larva, adult, and mixed) of Tyrophagus sp., a storage mite with potential as a factitious prey for mass rearing. Results showed that A. eharai successfully completed its life cycle on all prey stages, with the shortest developmental duration (7.9 ± 0.19 days) observed when feeding on Tyrophagus eggs. Females fed on larval and adult stages exhibited higher fecundity (≈41 eggs/female) and longer longevity (up to 41.1 ± 0.6 days). Life table parameters indicated stable population growth across all treatments, with intrinsic rates of increase (rₘ) ranging from 0.222 to 0.227 females/female/day and finite rates of increase (λ) from 1.248 to 1.255. These results demonstrate that Tyrophagus sp. can serve as an effective and economical alternative prey for the mass rearing of A. eharai, potentially enhancing the large-scale production and field application of this predator in integrated pest management programs.
Asgari F, Safavi SA, Moayeri HRS. 2022. Life table parameters of the predatory mite, Blattisocius mali Oudemans (Mesostigmata: Blattisociidae), fed on eggs and larvae of the stored product mite, Tyrophagus putrescentiae (Schrank). Egyptian Journal of Biological Pest Control 32, 118. https://doi.org/10.1186/s41938-022-00616-5
Baker EW, Wharton GW. 1952. An introduction to acarology. Macmillan, New York, 465 pages.
Birch LC. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 15–26. https://doi.org/10.2307/1605
Burnett T. 1960. A technique for maintaining acarine predator-prey populations. Canadian Entomologist 92, 234–237.
Castagnoli M. 1989. Biology and prospects for mass rearing of Amblyseius cucumeris (Oud.) (Acarina: Phytoseiidae) using Dermatophagoides farinae Hughes (Acarina: Pyroglyphidae) as prey. Redia 72, 389–402.
Chittenden AR, Saito Y. 2001. Why are there feeding and nonfeeding larvae in phytoseiid mites (Acari: Phytoseiidae)? Journal of Ethology 19, 55–62. https://doi.org/10.1007/s101640170018
Croft BA, McMurtry JA, Luh HK. 1998. Do literature records of predation reflect food specialization and predation types among phytoseiid mites (Acari: Phytoseiidae)? Experimental and Applied Acarology 22, 467–480. https://doi.org/10.1023/A:1006029605680
Ehara S. 2002. Some phytoseiid mites (Arachnida: Acari: Phytoseiidae) from West Malaysia. Species Diversity 7, 29–46. https://doi.org/10.12782/specdiv.7.29
Gerson U, Weintraub PG. 2012. Mites (Acari) as a factor in greenhouse management. Annual Review of Entomology 57, 229–247. https://doi.org/10.1146/annurev-ento-120710-100639
Hughes AM. 1976. The mites of stored food and houses. Technical Bulletin of the Ministry of Agriculture, Fisheries and Food, Vol. 9, 2nd edition, 400 pages.
Ji J, Lin T, Zhang Y, Lin J, Sun L, Chen X. 2013. A comparison between Amblyseius (Typhlodromips) swirskii and Amblyseius eharai with Panonychus citri (Acari: Tetranychidae) as prey: developmental duration, life table and predation. Systematic and Applied Acarology 18(2), 123–129. https://doi.org/10.11158/saa.18.2.4.
Ji J, Zhang Y, Lin J, Li S, Chen X, Katsura I. 2014. Life histories of three predatory mites feeding upon Carpoglyphus lactis (Acari: Phytoseiidae, Carpoglyphidae). Systematic and Applied Acarology 20(5), 491–496. https://doi.org/10.11158/saa.20.5.4
Ji J, Zhang Y, Wang J, Lin J, Sun L, Chen X, Katsura I, Yukata S. 2015. Can the predatory mites Amblyseius swirskii and Amblyseius eharai reproduce by feeding solely upon conspecific or heterospecific eggs (Acari: Phytoseiidae)? Applied Entomology and Zoology 50(2), 149–154. https://doi.org/10.1007/s13355-014-0316-5
Kakimoto K, Iguchi T, Inoue H, Kusigemati K. 2004. Predatory ability of Amblyseius eharai Amitai et Swirski (Acari: Phytoseiidae) on thrips. Kyushu Plant Protection Research 50, 82–87. https://doi.org/10.4241/kyubyochu.50.82
Kim DS, Jung C, Kim SY, Jeon HY, Lee JH. 2004. Regulation of spider mite populations by predacious mite complex in an unsprayed apple orchard. Korean Journal of Applied Entomology 42(3), 257–262.
Kishimoto H. 2005. A new technique for efficient rearing of phytoseiid mites (Acari: Phytoseiidae). Applied Entomology and Zoology 40, 77–81. https://doi.org/10.1303/aez.2005.77
Krezeczkowski K. 1961. Researches on the occurrence of the flour mite (Tyrophagus noxius Zachiw, Tyroglyphidae, Acarina) and its food preferences. Prace Naukowe Instytutu Ochrony Roślin 3, 101–127.
Lee HS, Gillespie DR. 2011. Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Experimental and Applied Acarology 53, 17–27. http://dx.doi.org/10.1007/s10493-010-9385-5.
Lee S, Kim D, Kim S. 1995. Ecology of Tetranychus kanzawai and its natural enemies at tea tree plantation. Korean Journal of Applied Entomology 34(3), 249–255.
Li GY, Pattison N, Zhang ZQ. 2021. Immature development and survival of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on eggs of Tyrophagus curvipenis (Fain & Fauvel) (Acari: Acaridae). Acarologia 61(1), 84–93. https://doi.org/10.24349/acarologia/20214415
Marisa C, Sauro S. 1990. Biological observations and life table parameters of Amblyseius cucumeris (Oud.) (Acarina: Phytoseiidae) reared on different diets. Redia 73, 569–583.
McMurtry JA, Croft BA. 1997. Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology 42, 291–321. DOI: 10.1146/annurev.ento.42.1.291.
McMurtry JA, De Moraes GJ, Sourassou NF. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology 18, 297–320. http://dx.doi.org/10.11158/saa.18.4.1.
Momen FM, Amer SAA. 1999. Effect of rosemary and sweet marjoram on three predacious mites of the family Phytoseiidae (Acari: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica 34, 355–361. DOI:10.1556/APhyt.34.1999.4.11.
Muma MH. 1971. Food habits of phytoseiidae (Acarina: Mesostigmata) including common species of Florida citrus. The Florida Entomologist 54, 21–34. http://dx.doi.org/10.2307/3493786.
Park YG, Lee JH. 2020. Temperature-dependent development and oviposition models and life history characteristics of Amblyseius eharai (Amitai et Swirski) (Acari: Phytoseiidae) preying on Tetranychus urticae (Koch) (Acari: Tetranychidae). Journal of Asia-Pacific Entomology 23, 869–878. https://doi.org/10.1016/j.aspen.2020.07.021
Pirayeshfar F, Sarraf Moayeri HR, Da Silva GL, Ueckermann EA. 2022. Comparison of biological characteristics of the predatory mite Blattisocius mali (Acari: Blattisocidae) reared on frozen eggs of Tyrophagus putrescentiae (Acari: Acaridae) alone and in combination with cattail and olive pollens. Systematic and Applied Acarology 27(3), 399–409. https://doi.org/10.11158/saa.27.3.1
Pu TS, Zeng T, Wei DW. 1995. The efficiency of 20 plant pollens for rearing four Phytoseiid mites. Guangxi Plant Protection 4, 6–8.
Puchalska EK, Kozak M. 2016. Typhlodromus pyri and Euseius finlandicus (Acari: Phytoseiidae) as potential biocontrol agents against spider mites (Acari: Tetranychidae) inhabiting willows: laboratory studies on predator development and reproduction on four diets. Experimental and Applied Acarology 63, 39–53. https://doi.org/10.1007/s10493-015-9973-5
Ranabhat NB, Goleva I, Zebitz CPW. 2013. Life tables of Neoseiulus cucumeris exclusively fed with seven different pollens. BioControl 59, 195–203. https://doi.org/10.1007/s10526-013-9554-5
Rodriguez JG, Rodriguez LD. 1987. Nutritional ecology of stored product and house dust mites. In: Slansky F, Rodriguez JG (eds.) Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates, pp. 345–368. Wiley & Sons.
Ryu MO, Lee WK, Kim TH. 1997. Habitats and abundance of Korean phytoseiid mites. Korean Journal of Applied Entomology 36(3), 224–230.
Saito Y, Mori H. 1975. The effects of pollen as an alternative food for three species of phytoseiid mites (Acarina: Phytoseiidae). Memoirs of the Faculty of Agriculture Hokkaido University 9, 236–246.
Saito Y, Mori H. 1981. Parameters related to potential rate of population increase of three predacious mites in Japan (Acarina: Phytoseiidae). Applied Entomology and Zoology 16, 45–47. DOI: 10.1303/aez.16.45
Sánchez-Ramos I, Alvarez-Alfageme F, Castañera P. 2007. Effects of relative humidity on development, fecundity and survival of three storage mites. Experimental and Applied Acarology 41(1–2), 87–100. DOI: 10.1007/s10493-007-9052-7
Solomon ME. 1946. Tyroglyphid mites in stored products: Ecological studies. Annals of Applied Biology 33, 280–289. https://doi.org/10.1111/j.1744-7348.1946.tb06279.
Thao NTP, Thuy NT, Quyen HL. 2023. Effects of different diets on biological characteristics of predatory mite Amblyseius eharai (Acari: Phytoseiidae). Insects 14(6), 519. https://doi.org/10.3390/insects14060519
Vangansbeke D, Duarte MVA, Pekas A, Wäckers F, Bolckmans K. 2023. Chapter 7 – Mass production of predatory mites: State of the art and future challenges. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds.) Mass Production of Beneficial Organisms, Second Edition, pp. 195–232. Academic Press. https://doi.org/10.1016/B978-0-12-822106-8.00006-3
Waite GK, Gerson U. 1994. The predator guild associated with Aceria litchii (Acari: Eriophyidae) in Australia and China. Entomophaga 39(3–4), 275–280. https://doi.org/10.1007/BF02373032
Wei DW, Zeng T, Pu TS. 1993. The potential reproduction of four Phytoseiid mites. Guangxi Plant Protection 4, 7–8.
Yao HF. 2012. The study of biological and chemical control on Thrips flavidulus. Master’s thesis, Huazhong Agricultural University, Wuhan, China, pp. 11–16.
Zannou ID, Hanna R. 2011. Clarifying the identity of Amblyseius swirskii and Amblyseius rykei (Acari: Phytoseiidae): Are they two distinct species or two populations of one species? Experimental and Applied Acarology 53, 339–347. https://doi.org/10.1007/s10493-010-9412-6
Zhang B, Zheng W, Zhao W, Xu X, Liu J, Zhang H. 2014. Intraguild predation among the predatory mites Amblyseius eharai, Amblyseius cucumeris and Amblyseius barkeri. Biocontrol Science and Technology 24(1), 103–115. https://doi.org/10.1080/09583157.2013.849658
Zhang YX, Lin JZ, Ji J, Chen X, Kang YM. 2005. Analyses of numerical responses and main life parameters for determining the suppression of Amblyseius cucumeris on Panonychus citri. Agricultural Sciences in China 4, 368–375.
Ho L. Quyen, Nguyen T. Thuy, Le T. A. Hong, Bach N. Minh, Le P. Chien, Phan V. Dan, Nguyen D. H. Vu, Tran G. Thinh, Tran C. Tu, Trinh V. Nga, Nguyen T. P. Thao, 2025. Development and reproductive performance of Amblyseius eharai (Acari: Phytoseiidae) fed on different stages of Tyrophagus sp. as a potential factitious prey for mass rearing. Int. J. Agron. Agric. Res., 27(5), 1-11.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.


