Importance of proteomics approach on identifying defense protein in response to biotic stresses in rice (Oryza sativa L.)

Paper Details

Research Paper 01/10/2013
Views (483) Download (13)
current_issue_feature_image
publication_file

Importance of proteomics approach on identifying defense protein in response to biotic stresses in rice (Oryza sativa L.)

Mansour Farkhondeh Tale Navi, Mahmoud Toorchi
Int. J. Biosci.3( 10), 221-232, October 2013.
Certificate: IJB 2013 [Generate Certificate]

Abstract

Biotic stress in rice (Oryza sativa L.) is one of the major stresses limiting crop productivity and the geographical distribution of many important crops worldwide. A clear perceptive of the molecular mechanisms involved in plants response to biotic stress is of fundamental importance to plant science. Knowledge about these mechanisms is also critical for continued development of rational breeding and transgenic strategies to improve resistant into stress in cereal crops. Proteomic approach has become a powerful tool to study plant responses to biotic stress and also proteomics approaches are being applied in rice for the past several years to identify better mechanism to the biotic stresses-responsive proteins. A large number of proteins responsive to biotic stresses, including pathogens such as fungi, bacteria, viruses and herbivores have been studied. Identified proteins are belong to functional categories into defense mechanisms, metabolism, energy, and signaling. This review will briefly summarize and discuss about the proteomics based investigation of biotic stress-responsive proteins in rice and increasing importance of proteomics approach in defense mechanism and genetic engineering of rice crop plants.

VIEWS 9

Abubakar Z, Ali F, Pinel A, Traore O. 2003. Phylogeography of Rice yellow mottle virus in Africa. Journal of General Virology 84, 1-11. http://dx.doi.org/10.1099/vir.0.18759-0

Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H. 2002. Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiology Biochemistry 40, 1061-1069. http://dx.doi.org/10.1016/S0981-9428(02)01471-7

Agrawal GK, Rakwal R. 2008. In: Agrawal GK, Rakwal R (eds) Plant proteomics: technologies, strategies, and applications. Wiley and Sons, Hoboken, NJ, USA http://dx.doi.org/10.1002/9780470369630.ch7

Agrawal GK, Rakwal R. 2011. Rice proteomics: a move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics. http://dx.doi.org/10.1002/pmic. 201000696

Allwood  JW,  Ellis  DI  ,  Goodacre  R.  2008. Metabolomic technologies and their application to the study  of  plants  and  plant-host  interactions.  Plant Physiology 132, 117-135. http://dx.doi.org/10.1111/j.1399-3054.2007.01001.x

Alscher GR, Neval E, Lenwood SH. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53, 1331-1341. http://dx.doi.org/10.1093/jexbot/53.372.1331

Chen F, Li Q, He ZH. 2007. Proteomic analysis of rice plasma membrane-associated proteins in response to chitooligosaccharide elicitors. Journal of Integrative Plant Biology 49, 1-5. http://dx.doi.org/10.1111/j.1744-7909.2007.00496.x

Chi F, Yang P, Han F, Jing Y, Shen S. 2010. Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti. Proteomics 10, 1861-1874. http://dx.doi.org/10.1002/pmic.200900694

Chen F, Li Q, He ZH. 2007a. Proteomic analysis of rice plasma membrane-associated proteins in response to chitooligosaccharide elicitors. Journal of Integrative Plant Biology 49, 863–870. http://dx.doi.org/10.1111/j.1744-7909.2007.00496.x

Chen F, Yuan Y, Li Q, He Z. 2007 b. Proteomic analysis of rice plasma membrane reveals proteins involved in early defence response to bacterial blight. Proteomics 7, 1529-1539. http://dx.doi.org/10.1002/pmic.200500765

Dangl, Jones. 2001. Plant pathogens and integrated defence responses to infection. Nature 411, 826-833. http://dx.doi.org/10.1038/35081161

DeWit PJ, Mehrabi R, Vanden Burg, HA, Stergiopoulos I. 2009. Fungal effector proteins:past, present and future. Molecular Plant Pathology 10, 735-747. http://dx.doi.org/10.1111/j.1364-3703.2009.00591.x

Edwards R, Dixon DP, Walbot V. 2000. Plant glutathione Stransferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science 5, 193-198. http://dx.doi.org/10.1016/S1360-1385(00)01601-0

Hahn MG. 1996. Microbial elicitors and their receptors in plants. Annual review of phytopathology 134, 387-412. http://dx.doi.org/10.1146/annurev.phyto.34.1.387

Hwang DH, Kim ST, Kim SG, Kang KY. 2007. Comprehensive analysis of the expression of twenty-seven beta-1, 3-glucanase genes in rice (Oryza sativa L.). Molecular Cells 23, 207-214.

Huckelhoven R, Kogel, KH. 2003. Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance?.         Planta 216, 891-902. http://dx.doi.org/10.1007/s00425-003-0973-z

Iwai T, Seo S, Mitsuhara I, Ohashi Y. 2007. Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant Cell Physiology 48, 915-924. http://dx.doi.org/10.1093/pcp/pcm062

Jiang J, Li J, Xu Y, Han Y, Baiy ZG, Lou Y, Xu, Z, Chong K. 2007. RNAi knockdown of Oryza sativa root meander curling gene led to altered root development  and  coiling  which  were  mediated  by jasmonic acid signalling in rice. Plant Cell Environ 30, 690-699. http://dx.doi.org/10.1111/j.1365-3040.2007.01663.x

Jorrin   JV,   Maldonado    AM,   Castillejo   MA. 2007. Plant proteome analysis: a 2006 update. Proteomics 7, 2947-2962. http://dx.doi.org/10.1002/pmic.200700135

Kandasamy  S,  Loganathan  K,  Muthuraj  R, Duraisamy, S, Seetharaman S, Thiruvengadam R, Ponnusamy B, Ramasamy S. 2009. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Science 7, 47-55. http://dx.doi.org/10.1186/1477-5956-7-47

Kim ST, Cho KS, Yu S, Kim SG, Hong JC, Han C, Bae DW, Nam MH, kang KY. 2003. Proteomics analysis of differentially expressed protein induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3, 2368-2378. http://dx.doi.org/10.1002/pmic.200300577

Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY. 2004. Proteomics analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4, 3569-2578. http://dx.doi.org/10.1002/pmic.200400999

Kim ST, Kang YH, Wang Y, Wu J, Park ZY, Rakwal R, Agrawal GK, Lee SY, Kang KY. 2009. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics 9, 1302-1313. http://dx.doi.org/10.1002/pmic.200800589

Konishi H, Ishiguro K, Komatsu S. 2001. A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 1, 1162-1171. http://dx.doi.org/10.1002/1615-9861

Kim ST, Yu S, Kang YH, Kim SG, Kim JY, Kim SH, Kang, KY. 2008a. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Reports 27, 593-603. http://dx.doi.org/10.1007/s00299-008-0600-3

Kim ST, Kim SG, Kang YH, Wang Y, Kim JY, Yi N, Kim JK, Rakwal R, Koh HJ, Kang KY. 2008b. Proteomics analysis of rice lesion mimic mutant (spl1) reveals tightly localized probenazole induced protein (PBZ1) in cells undergoing programmed cell death. Journal Proteome Research 7, 1750-1760. http://dx.doi.org/10.1021/pr700878t

Kim SG, Kim ST, Wang Y, Yu S, Choi IS, Kim YC, Kim WT, Agrawal GK, Rakwal R, Kang KY. 2011. The RNase activity of rice probenazole-induced protein1  (PBZ1)  plays  a  key  role  in  cell  death  in plants. Molecular Cells 31, http://dx.doi.org/25-31.10.1007/s10059-011-0004-z

Lamb C, Dixon RA. 1997. The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48, 251-271. http://dx.doi.org/10.1146/annurev.arplant.48.1.251

Levine A, Tenhaken R, Dixon RA, Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive response. Cell 79, 583-593. http://dx.doi.org/10.1016/0092-8674(94)90544-4

Lee  J,  Bricker  TM,  Lefevre  M,  Pinson  SR, Oard JH. 2006. Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Molecular Plant Pathology 7, 405-416. http://dx.doi.org/10.1111/j.1364-3703.2006.00350.x

Leister R, Ausubel FM, Katagiri F. 1996. Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proceeding of the National Academy of Sciences of the USA 93, 15497-15502.

Liao M, Li Y, Wang Z. 2009. Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 9, 2809-2819. http://dx.doi.org/10.1002/pmic.200800192

Li Y, Wang Z, Jia X. 2004. Specificity and characterization of an elicitor (CSB I) from Magnaporthe grisea. Acta Phytopathology sin 34, 237-243.

Lin YZ, Chen HY, Kao R, Chang SP, Chang SJ, Lai EM. 2008. Proteomic analysis of rice defense response induced by probenazole. Phytochemistry 69, 715-728. http://dx.doi.org/10.1016/j.phytochem.2007.09.005

Long DH, Lee FN, TeBeest DO. 2000. Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars. Plant Disease 84, 403-409. http://dx.doi.org/10.1094/PDIS.2000.84.4.403

Mahmood T, Jan A, Kakishima M, Komatsu S. 2006. Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 6, 6053-6065. http://dx.doi.org/10.1002/pmic.200600470

Matsumura H, Nirasawa S, Kiba A, Urasaki N. 2003. Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant Journal 33, 425-434. http://dx.doi.org/10.1046/j.1365 313X.2003.01639.x

Murad AM, Laumann RA, Limatde. A, Sarmento RB, Noronha EF, Rocha TL, Valadares-Inglis MC, Franco OL. 2006. Screening of entomopathogenic Metarhizium anisopliae isolates and proteomic analysis of secretion synthesized in response to cowpea weevil (Callosobruchus maculatus) exoskeleton. Company Biochemistry Physiology C Toxicol Pharmacology 142, 365-370. http://dx.doi.org/10.1016/j.cbpc.2005.11.016

Murad AM, Laumann RA, Mehta A, Noronha EF, Franco OL. 2007. Screening and secretomic analysis of entomopathogenic Beauveria bassiana isolates in response to cowpea weevil (Callosobruchus maculatus) exoskeleton. Company Biochemistry Physiology C Toxicology Pharmacology 145, 333-338. http://dx.doi.org/10.1016/j.cbpc.2007.01.010

Nanda AK, Andrio E, Marino D, Pauly N, Dunand C. 2010. Reactive oxygen species during plant-microorganism early interactions. Journal Integrative Plant Biology 52, 195-204. http://dx.doi.org/10.1111/j.1744-7909.2010.00933.x

Nishizawa Y, Saruta M, Nakazono K, Nishio Zl. 2003. Plant Molecular Biology 51, 43-52.

Nurnberger A, Brunner F. 2002. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Current Opinion in Plant Biology 5, 3218-3248. http://dx.doi.org/10.1016/S1369-5266(02)00265-0

O’Farrell PH. 1975. High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry 250, 4007-4021.

Pinel, AN, Guessan, P, Bousalem M, Fargette D. 2000. Phylogeography of Rice yellow mottle virus in Africa. Archives of Virology 145, 1621-1638. http://dx.doi.org 10.1099/vir.0.18759-0.

Pimentel D. 1991. Diversification of biological control strategies in agriculture. Crop Protection 10, 243-253. http://dx.doi.org/10.1016/02612194(91)90001-8

Pimentel D. 2001. Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal and Microbe Species. College of Agriculture and Life  Sciences, Cornell University, Ithaca, NY 14850-0901, USA, 384. http://dx.doi.org/10.1016/S0167-8809(00)00178-X

Rakwal R, Agrawal GK. 2003. Rice proteomics:current status and future perspectives Electrophoresis 24, 3378-3389. http://dx.doi.org/10.1002/elps.200305586

Talbot NJ. 2003. On the trail of a cereal killer, exploring the biology of Magnaporthe grisea. Annual Review of Microbiology 57, 177-202. http://dx.doi.org/10.1146/annurev.micro.57.030502.090957

Valent B, Chumley FG. 1991. Molecular Genetic Analysis of the Rice Blast Fungus, Magnaporthe grisea. Annual Review of Phytopathology 29, 443-467. http://dx.doi.org/10.1146/annurev.py.29.090191.002 303

Van Loon LC, Van Strien E A. 1999.The families of pathogenesis-related proteins, their activities, and comparative analysis of pr-1 type proteins. Physiological and Molecular Plant Pathology 55, 85-97. http://dx.doi.org/10.1006/pmpp.1999.0213

Ventelon-Debout M, Delalande F, Brizard J.P, Diemer H, Vandorsselaer A, Brugidou C. 2004. Proteome analysis of cultivar specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics 4, 216-225. http://dx.doi.org/10.1002/pmic.200300502

Wei Z, Hu W, Lin Q, Cheng X, Tong M, Zhu L, Chen R, He G. 2009. Understanding rice plant resistance to the brown plant hopper (Nilaparvata lugens): a proteomic approach. Proteomics 9, 2798-2808. http://dx.doi.org/10.1002/pmic.200800840

Whitham SA, Yang C, Goodin MM. 2006. Global impact: elucidating plant responses to viral infection. Molecular Plant-Microbe Interaction 19, 1207-1215. http://dx.doi.org/10.1094/MPMI-19-1207

Yoshioka H, Asai S, Yoshioka M, Kobayashi M. 2009. Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity. Molecular Cells 28, 321-329. http://dx.doi.org/10.1007/s10059-009-0156-2

Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ GuoY. 2009. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiology 149, 916-928. http://dx.doi.org/10.1104/pp.108.131144