Protectant and curative efficacy of different fungicides against citrus melanose caused by Phomopsis citri under in vivo conditions

Paper Details

Research Paper 01/08/2019
Views (663)
current_issue_feature_image
publication_file

Protectant and curative efficacy of different fungicides against citrus melanose caused by Phomopsis citri under in vivo conditions

Muhammad Idrees, Sumera Naz, Muhammad Ehetisham-Ul-Haq, Saira Mehboob, Muhammad Kamran, Shaukat Ali, Muhammad Iqbal
Int. J. Biosci. 15(2), 194-199, August 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Melanose caused by Phomopsis citri pose a major threat to citrus plants that can affect trees at any age and damages fruit, leaves, twigs, branches. If favorable conditions prevail, this disease may result in heavy economic losses. Present study was conducted for In-vivo Protectant and curative efficacy evaluation of fungicides against P. citri. Five treatments consisting of chemicals viz., Emesto Silver 240 FS % (Penflufen), Kocide® 3000 (Copper Hydroxide), Nativo 75% WG (Tebuconazole + Trifloxystrobin) and Score 250 EC (Difenoconazole) were prepared at recommended doses with three replications and control plants were untreated. Data was recorded on disease incidence (%) and disease reduction over control (%) at weekly interval.  In general, all the tested fungicides exhibited significant antifungal potential when applied as protectant while least effective or show no activity as curative. The least disease incidence was observed with Kocide i.e., 12% followed by Nativo (18%) whereas the highest incidence (21%) was recorded by Score and Emesto silver. Percent disease reduction over control was calculated and revealed that Kocide, Nativo, Score and Emesto silver significantly lowers (P < 0.05) the incidence of melanose by 80, 71, 65 and 65% respectively. It was concluded that Kocide is best for the management of citrus melanose when applied as protectant under in vivo conditions.

Bushong PM, Timmer LW. 2000. Evaluation of postinfection control of citrus scab and melanose with benomyl, fenbuconazole, and azoxystrobin. Plant Disease 84, 1246-1249.

Gopal K, Mukunda Lakshmi L, Sarada G, Nagalakshmi T, Gouri Sankar T, Gopi V, Ramana KTV. 2014. Citrus Melanose (Diaporthe citri Wolf): A Review, International Journal of Current Microbiology and Applied Sciences 3(4), 113-124.

Knapp JL, ed. 2000. 2000 Florida Citrus Pest Management Guide. Univ. Florida. Institute of Food and Agricultural Sciences Publ. No. SP-43.

Kuramoto T, Yamada S. 1975. The influence of environmental factors on the infection of citrus melanose caused by Diaporthe citri (Faw:) Wolf. Bulletin of the Fruit Tree Research Station B-2, 75-86.

Mondal SN, Vicent A, Reis RF, Timmer LW. 2006. Saprophytic colonization of citrus twigs and factors affecting survival of conidia of Diaporthe citri, the cause of melanose. Plant Disease 91, 387-392.

Mondal SN, Vicent A, Reis RF, Timmer LW. 2007. Efficacy of pre and post inoculation application of fungicides to expanding young citrus leaves for control of melanose, scab, and Alternaria brown spot. Plant Disease 91, 1600-1606.

O’Leary AL, Sutton TB. 1986. Effects of postinfection applications of ergosterol biosynthesis-inhibiting fungicides on lesion formation and pseudothecial development of Venturia inaequalis. Phytopathology 76, 119-124.

Schwabe WFS, Jones AL, Jonker JP. 1984. Greenhouse evaluation of curative and protective action of sterol-inhibiting fungicides against apple scab. Phytopathology 74, 249-252.

Steel RGD, Torrie JH. 1980. Principles and procedures of statistics. McGraw Hill Book Co., Inc, New York, USA.

Timmer LW, Zitko SE. 1998. Evaluation of fungicides for control of melanose on grapefruit, 1997. Fungicide and Nematicide Tests 54, 554-555.

Timmer LW, Garnsey SM, Graham JH. 2000. Compendium of Citrus Diseases. 2nd ed. The American Phytopathological Society, St. Paul, MN.

Whiteside JO. 1977. Sites of action of fungicides in the control of citrus melanose. Phytopathology 67, 1067-1072.

Wilcox W. 1990. Postinfection and antisporulant activities of selected fungicides in control of blossom blight of sour cherry caused by Monilinia fructicola. Plant Disease 74, 808-811.

Zitko SE, Timmer LW. 1997. Evaluation of fungicides for control of citrus scab and melanose on grapefruit. Fungicide and Nematicide Tests 53, 490.

Related Articles

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.

Anthelmintic potential of powdered papaya seed Carica papaya in varying levels against Ascaridia galli in broiler chicken

Roniemay P. Sayson, Mylene G. Millapez, Zandro O. Perez, Int. J. Biosci. 27(2), 114-121, August 2025.

Valorization of fish scale waste for the synthesis of functional gelatin-based biopolymers

N. Natarajan Arun Nagendran, B. Balakrishnan Rajalakshmi, C. Chellapandi Balachandran, Jayabalan Viji, Int. J. Biosci. 27(2), 102-113, August 2025.