Welcome to International Network for Natural Sciences | INNSpub

A comprehensive overview of transcription factors (WRKY, NAC and BZIP) in plants

Review Paper | January 1, 2019

| Download 5

Roohi Aslam, Qamar Wali, Muhammad Sarwar, Muhammad Naeem, Muhammad Abu Bakar Zia

Key Words:

Int. J. Biosci.14( 1), 495-509, January 2019

DOI: http://dx.doi.org/10.12692/ijb/14.1.495-509


IJB 2019 [Generate Certificate]


Transcription factors are involved in the regulation of transcriptional reprogramming associated with the plants stress responses. Large number of transcriptional factors has been identified so far, which are involved in defense responses in plants against certain biotic and abiotic stresses. These transcription factors are divided according to their DNA binding domains (DBDs) in plants that are believed to be distinct from prokaryotes and other lineages of eukaryotes. Recently, identification and characterization of large number of important transcription factors have been performed. In addition, structure of some important DBDs have also been elaborated in detail utilizing techniques such as NMR spectroscopy or X-ray crystallography. This review is about a comprehensive overview on the structure and role of some transcription factors in plants. This publication will provide information in plant transcription factors, including the important aspects and unifying themes to understand transcription factors and the important roles of particular families in specific processes.


Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

A comprehensive overview of transcription factors (WRKY, NAC and BZIP) in plants

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki TFD. 2005. A bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 2005, 309, 1052-1056.

Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. 1997. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841-857.

Ashraf M, Foolad M. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance Environmental and experimental botany 59, 206-216.

Baena-González E, Rolland F, Thevelein JM, Sheen J. 2007. A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938-942.

Bakshi M, Oelmuller R. 2014. WRKY transcription factors Jack of many trades in plants. Plant Signal. Behav 9, e27700. DOI: 10.4161/psb.27700.

Blanc G, Wolfe KH. 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes The plant cell   16, 1667-1678.

Borrill P, Harrington SA, Uauy C. 2017. Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploidy wheat. G3 Genes Genomes Genet 7, 3019-3029.

Cai Y, Chen X, Xie K, Xing Q, Wu Y, Li J, Du C, Sun Z, Guo Z. 2014. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS ONE 9(7), e102529. DOI: journal.pone.0102529.

Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell Annals of botany 103, 551-560.

Chen F, Fasoli M, Tornielli GB, Santo SD, Pezzotti M, Zhang L, Cai B, Cheng ZM. 2013. The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS One 8, e80818. DOI: 10.1371/journal.pone.0080818

Chen TH, Murata N. 2011. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications Plant, cell & environment 34, 1-20.

Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH. 2009. The WRKY 6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21, 3554-3566. DOI: 10.1105/ tpc.108.064980.

Dai X, Wang Y, Zhang W. 2017. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J. Exp. Bot 67, 947-960.

Devaiah BN, Karthikeyan AS, Raghothama KG. 2007. WRKY75 transcription factor Is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol      143, 1789-1801.

Feng G, Li Y, Cheng ZM. 2014. Plant molecular and genomic responses to stresses in projected future CO2 environment. Crit. Rev. Plant. Sci 33, 238-249. DOI: 10.1080/ 07352689.2014.870421.

Flowers T Yeo A. 1995. Breeding for salinity resistance in crop plants: where next? Functional Plant Biology 22, 875-884.

Floyd SK, Bowman JL. 2007. The ancestral developmental tool kit of land plants International Journal of Plant Sciences 168, 1-35.

Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y. 2000. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12, 901-915.

Gonzalez A, Brown M, Hatlestad G, Akhavan N, Smith T, Hembd A, Moore J, Montes D, Mosley T, Resendez J, Nguyen H, Wilson L, Campbell A, Sudarshan D, Lloyd A. 2016. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Dev. Biol 419(1), 54-63.

Grunewald W, de Smet I, Lewis DR, L€ofke C, Jansen L, Goeminne G, Bossche RV, Karimi M, De Rybel B, Vanholme B, Teichmann T, Boerjan W, Van Montagu MCE, Gheysen G, Muday GK, Frim J, Beeckman T. 2011. Transcription factor WRKY 23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc. Natl. Acad. Sci. USA 109, 1554-1559. DOI: org/10.1073/ pnas.1121134109.

Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S. 2014. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in. Arabidopsis. PLoS Genet 10(5), e1004384. doi:10.1371/journal.pgen.1004384.

Hisako O, Kouji S, Koji D, Toshifumi N, Yasuhiro O, Kazuo M, Kenichi M, Naoki O, Jun K, Piero C. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10, 239-247.

Hu W, Wei YX, Xia ZQ, Yan Y, Hou ZW, Zou ML, Lu C, Wang WQ, Peng M. 2015. Genome-wide identification and expression analysis of the NAC transcription factor family in cassava. PLoS ONE 2015, 10, e0136993.

Ishiguro S, Nakamura K. 1994. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato Molecular and General Genetics MGG 244, 563-571.

Jakoby M, Weisshaar B, Drögelaser W, Vicentecarbajosa J, Tiedemann J, Kroj T, Parcy F. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci 7, 106-111.

Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. 2017. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol 59, 86-101. DOI: 10.1111/ jipb.12513.

Jiang W, Yu D. 2009. Arabidopsis WRKY 2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9, 96. DOI:10.1186/1471-2229-9-96.

Jiang Y, Liang G, Yang S, Yu D. 2014. Arabidopsis WRKY 57 functions as a node of convergence for jasmonic acid- and auxin- mediated signaling in jasmonic acid induced leaf senescence. Plant Cell 26, 230-245.

Jing S, Zhou X, Song Y, Yu D. 2009. Heterologous expression of OsWRKY 23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regu 58, 181-190. DOI: 10.1007/s10725-009-9366-z.

Kaminaka H, Näke C, Epple P, Dittgen J, Schütze K, Chaban C, Holt BF, Merkle T, Schäfer E, Harter K. 2006. bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J. 25, 4400-4411.

Kang K, Park S, Natsagdorj U, Kim YS, Back K. 2011. Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves. Plant J. 66, 247-257.

Kasajima I, Ide Y, Yokota Hirai M, Fujiwara T. 2010. WRKY 6 is involved in the response to boron deficiency in Arabidopsis thaliana. Physiol. Plant 139, 80-92. DOI: 10.1111/j.1399-3054.2010.01349.x.

Lara P, Oñatesánchez L, Abraham Z, Ferrándiz C, Díaz I, Carbonero P, Vicentecarbajosa J. 2003. Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI 3 and two bZIPs related to OPAQUE 2. J. Biol. Chem 278, 21003-21011.

Le DT, Nishiyama R,Watanabe Y, Mochida K, Yamaguchi SK, Shinozaki K, Tran LSP. 2011. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18, 263-276.

Li D, Liu P, Yu J, Wang L, Dossa K, Zhang Y, Zhou R, Wei X. 2017a. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biol 17, 152.

Li W, Wang H, Yu D. 2016. Arabidopsis WRKY transcription factors WRKY 12 and WRKY 13 oppositely regulate flowering under short-day conditions. Mol. Plant 9(11), 1492-1503.

Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X. 2007. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol. Biol. 2014, 84, 19-36.

Liu J, Chen X, Liang X, Zhou X, Yang F, Liu J, He SY, Guo Z. 2016. Alternative splicing of rice WRKY 62 and WRKY 76 transcription factor genes in pathogen defense. Plant Physiol 171, 1427-1442.

Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. 2005. MINISEED3 (MINI 3), a WRKY family gene, and HAIKU 2 (IKU 2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. USA. 102(48), 17531-17536.

Ma J, Wang F, Li MY, Jiang Q, Tan GF, Xiong AS. 2014. Genome wide analysis of the NAC transcription factor family in Chinese cabbage of elucidate responses to temperature stress. Sci. Hortic 165, 82-90.

Miao Y, Zentgraf U. 2010. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY 53. Plant J. 63, 179-188.

Mohammed N, Ramaswamy M, Akhter MS, Kouji S, Hiroaki, K, Hisako O, Shoshi K. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene 465, 30-44.

Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism Annu Rev Plant Biol   56, 165-185.

Nieva C, Busk PK, Domínguez-Puigjaner E, Lumbreras V, Testillano PS, Risueño MC, Pagès M. 2005. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol. Biol 58, 899-914.

Puckett CA, Barton JK. 2007. Methods to explore cellular uptake of ruthenium complexes Journal of the American Chemical Society 129, 46-47.

Puranik S, Sahu PP, Mandal SN, Venkata SB, Parida SK, Prasad M. 2013. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS ONE 8, e64594.

Que F, Wang GL, Huang Y, Xu ZS, Wang F, Xiong AS. 2015. Genomic identification of group A bZIP transcription factors and their responses to abiotic stress in carrot. Genet. Mol. Res 14, 13274-13288.

Ricachenevsky FK, Sperotto RA, Menguer PK, Fett JP. 2010. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol. Biol. Rep 37, 3735-3745. DOI: 10.1007/s11033-010-0027-0.

Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR. 2000. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110.

Riechmann JL. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes Science 290, 2105-2110.

Robinson MF, Very AA, Sanders D, Mansfield T. 1997. How can stomata contribute to salt tolerance? Annals of botany 80, 387-393.

Sabovljevic M, Sabovljevic A. 2007. Contribution to the coastal bryophytes of the Northern Mediterranean: Are there halophytes among bryophytes Phytologia balcanica 13, 131-135.

Seoighe C, Gehring C. 2004. Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome Trends in Genetics 20, 461-464.

Shen H, Cao K, Wang XA. 2007. Conserved proline residue in the leucine zipper region of AtbZIP 34 and AtbZIP 61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochem. Biophys. Res. Commun. 2007, 362, 425-430.

Shiriga K, Sharma R, Kumar K, Yadav SK, Hossain F, Thirunavukkarasu N. 2014. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene 2, 407-417.

Silveira AB, Gauer L, Tomaz JP, Cardoso PR, Carmelloguerreiro S, Vincentz M. 2007. The Arabidopsis AtbZIP 9 protein fused to the VP 16 transcriptional activation domain alters leaf and vascular development. Plant Sci 172, 1148-1156.

Singh AK, Sharma V, Pal AK, Acharya V Ahuja PS. 2013. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20, 403-423.

Souer E, Houwelingen A, Kloos D, Mol J, Koes R. 1996. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159-170.

Su HY, Zhang SZ, Yuan XW, Chen CT, Wang XF, Hao YJ. 2013. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1, 2-CUC2 transcription factor family in apple. Plant Physiol. Biochem 71, 11-21.

Su T, Xu Q, Zhang F, Chen Y, Li L, Wu W, Chen Y. 2015. WRKY 42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol 167, 1579-1591. DOI: 10.1104/ pp.114.253799.

Thurow C, Schiermeyer AS, Butterbrodt T, Nickolov K, Gatz C. 2005. Tobacco bZIP transcription factor TGA2.2 and related factor TGA 2.1 have distinct roles in plant defense responses and plant development. Plant J. 44, 100-113.

Ulm R, Baumann A, Oravecz A, Máté Z, Adám E, Oakeley EJ, Schäfer E, Nagy F. 2004. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1397-1402.

Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97, 11632-11637.

Wang H, Xu Q, Kong Y, Chen Y, Duan J, Wu W, Chen Y. 2014. Arabidopsis WRKY 45 transcription factor activates PHOSPHATE TRANSPORTER1; 1 expression in response to phosphate starvation. Plant Physiol 164, 2020-2029. DOI: 10.1104/pp.113.235077.

Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY. 2011. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J. Integr. Plant Biol 53, 212-231.

Weber E, Sun SG, Li B. 2008. Invasive alien plants in China: diversity and ecological insights Biological invasions 10,1411-1429.

Wei SW, Gao LW, Zhang YD, Zhang FR, Yang X, Huang DF. 2016. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melon) and their expression analysis under salt stress. Plant Cell Rep 35, 1827-1839.

Wellmer F, Kircher S, Rügner A, Frohnmeyer H, Schäfer E, Harter K. 1999. Phosphorylation of the parsley bZIP transcription factor CRPF 2 is regulated by light. J. Biol. Chem 274, 29476-29482.

Wu KL, Guo ZJ, Wang HH, Li J. 2005. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12, 9-26.

Yanez M, Caceres S, Orellana S, Bastias A, Verdugo I, Ruiz-Lara S, Casaretto JA. 2009. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 28, 1497-1507.

Ying S, Zhang DF, Fu J, Shi YS, Song YC, Wang TY, Li Y. 2012. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP 72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235, 253-266.

Yu Y, Liu S, Wang L, Kim S, Seo P, Qiao M, Wang N, Li S, Cao X, Park C, Xiang F. 2016. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in. Arabidopsis thaliana. Plant J. 85, 96-106. DOI: 10.1111/tpj.13092.

Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J. 2011. Plant TFDB 2.0: update and improvement of the comprehensive plant transcription factor database 39, 1114-1117.

Zhang H, Zhang J, Lang Z, Botella JR, Zhu J. 2017. Genome editing-principles and applications for functional genomics research and crop improvement. Crit. Rev. Plant Sci. 36, 291-309.

Zhang J, Peng Y, Guo Z. 2008. Constitutive expression of pathogen-inducible OsWRKY 31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18, 508-521. DOI: 10.1038/ cr.2007.104.

Zhou X, Jiang Y, Yu D. 2011. WRKY 22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol. Cells 31, 303-313. doi:10.1007/s10059-011-0047-1.

Zhu JK. 2002. Salt and drought stress signal transduction in plants Annual review of plant biology 53, 247-273.

Zou M, Guan Y, Ren H, Zhang F, Chen F. 2008. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol    66, 675-683.