A review: role of reproductive genes in embryonic development and increasing litter size

Paper Details

Research Paper 01/12/2021
Views (351) Download (24)

A review: role of reproductive genes in embryonic development and increasing litter size

Edlyn E. Pooten, Claro N. Mingala
Int. J. Biosci.19( 6), 1-12, December 2021.
Certificate: IJB 2021 [Generate Certificate]


Through the years, researchers relied simply on selective breeding to obtain and improve the desirable traits of the preferred animal. Recently, the livestock industry has gone far due to advancement in genetics which has resulted in advanced and revolutionized technologies that have made genome editing efficient, precise, rapid and economical. Candidate reproductive genes were evaluated for their functions in the different stages of the reproductive process. It was shown that the reproductive genome controls all phases of embryonic development as well as an increase in litter size. Litter size is a complex physiological trait in productive species and is affected by several component traits that are controlled by genes. A substantial increase in litter size has economic implications for swine production.


Abane R, Mezger V. 2010. Roles of heat shock factors in gametogenesis and development. FEBS Journal 277, 4150-4172. https://doi.org/10.1111/j.1742-4658.2010.07830.x

Almiñana C, Health P, Wilkinson S, Sanchez-Osorio J, Cuello C, Pamilla I, Gil M, Vazquez J, Vazquez J, Roca J, Martinez E, Fazeli A.  2012. Early Developing Pig Embryos Mediate Their Own Environment in the Maternal Tract. PLoS ONE 7(3), e33625. http://dx.doi.org/10.1371/journal.pone.0033625

Andika I, Kondo H, Zusuki N. 2019. Dicer functions transcriptionally and postranscriptionally in a multilayer antiviral defense.  Proceeding of the National Academy of Sciences of the United States of America 116(6), 2275-2281. https://doi.org/10.1073/pnas.0506426102

Argente M, Santacreu M, Climent A, Blasco A. 2008. Effects of intrauterine crowding on available uterine space per fetus in rabbits. Livestock Science 114, 211–219. http://dx.doi.org/10.1016/j.livsci.2007.05.008

Argente M. 2016. Major components in limiting litter size. Intech. https://doi.org/10.5772/62280

Bazer F, Thatcher W, Martinant-Botte F, Terqui M, Lacroix M, Bernard S, Revault M, Dubois D. 1991.Composition of uterine flushings from Large White and prolific Chinese Meishan gilts. Reproduction Fertility and Development 3, 51–60. https://doi.org/10.1016/0093-691X(93)90343-4

Bhatt P, Kadam K, Saxena A, Natraj U. 2004. Fertilization, embryonic development and oviductal environment: Role of estrogen induced oviductal glycoprotein. Indian Journal of Experimental Biology 42, 1043–1055.

Bennett G, Leymaster K. 1989. Integration of ovulation rate, potential embryonic viability and uterine capacity into a model of litter size in swine. Journal of Animal Science 67, 1230–1241. https://doi.org/10.2527/jas1989.6751230x

Chakravarty S, Bansal P, Sutovsky P, Gupta S. 2008. Role of proteasomal activity in the induction of acrosomal exocytosis in human spermatozoa. Reproductive Biomedicine Online 16(3), 391–400. http://doi.org/10.1016/S1472-6483(10)60601-3

Chen X, Fu J, Wang A. 2016. Expression of genes involved in progesterone receptor paracrine signaling and their effect on litter size in pig. Journal of Animal Science and Biotechnology 7, 13. http://dx.doi.org/10.1186/s40104-016-0090-z

Christians E, Michel E, Adenot P, Mezger V, Rallu M, Morange M & Renard J. 1997. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation. Molecular Cell Biology 17, 778–788. https://dx.doi.org/10.1128%2Fmcb.17.2.778

Christians E, Davis A, Thomas S, Benjamin I. 2000. Maternal Effect of Hsf1 on reproductive success. Nature 407(6805), 693-694. https://doi.org/10.1038/35037669

Dean J. 2002. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. Journal of Reproductive Immunology 53,171-180. https://doi.org/10.1016/s0165-0378(01)00100-0

De Vries AG, 1989. A model to estimate economic value of traits in pig breeding. Livestock Production Science 21, 49-66.

Du Puy L, Lopes S, Haagsman H, Roelen B. 2011. Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology 75(3), 513–526. https://doi.org/10.1016/j.theriogenology.2010.09.019

Ellederova Z, Halada P, Man P, Kubelka M, Motlik J, Kovarova H. 2004. Protein patterns of pig oocytes during in vitro maturation. Biology of Reproduction 71(5), 1533–1539. https://doi.org/10.1095/biolreprod.104.030304

Fang Y, Fu D, Shen X. 2010. The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochimica et Biophysica Acta 1806(1), 1–6. https://doi.org/10.1016/j.bbcan.2010.03.001

Fazeli A. 2008. Maternal communication with gametes and embryos. Theriogenology 70, 1182–1187. https://doi.org/10.1016/j.theriogenology.2008.06.010

Ford S, Vonnahme K, Wilson M. 2002.Uterine capacity in the pig reflects a combinationof uterine environment and conceptus genotype effects. Journal of Animal Science80 (1), E66–E73. https://doi.org/10.1016/j.theriogenology.2008.06.010

Geisert, R, Zavy M, Moffatt R, Blair R, Yellin T. 1990. Embryonic steroids and the establishment of pregnancy in pigs. Journal of Reproductive Fertility 40, 293–305.

Gu Y, Chen Q, Gu Z, Shi Y, Yao Y, Wang J, Sun Z, Tso J. 2009 Ubiquitin carboxyl-terminal hydrolase L1 contributes to the oocyte selective elimination in prepubertal mouse ovaries. Sheng Li Xue Bao 61(2), 175–184. https://dx.doi.org/10.1002%2Fjcp.22876

Haley CS, Avalos E, Smith C. 1988. Selection for litter size in the pig. Animal Breeding Abstract 56, 319–332.

Haouzi D, Assou S, Mahmoud K, Tondeur S, Reme T. 2009. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Human Reproduction 24, 1436–1445. https://doi.org/10.1093/humrep/dep039

Hwang j, Mi An S, Yu G, Park D, Kang D, Kim T, Park H, Ha J, Kim C. 2018. Association of single-nucleotide polymorphisms in NAT9 and MAP3K3 gene with litter size traits in Berkshire pigs. Archives Animal Breeding 61, 379-386. https://doi.org/10.5194/aab-61-379-2018

Johnson R, Nielsen M, Casey S. 1999. Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. Journal Animal Science 77, 541–557. https://doi.org/10.2527/1999.773541x

Kaczmarek M, Najmula J, Guzewska M, Przyrodzka E. 2019. MiRNAs in the Pre-Implantation Period: Contribution to Embryo-Maternal Communication in Pigs. International Journal of Molecular Sciences 21, 2229.

Kan R, Sun X, Kolas N, Avdievich E, Kneitz B, Edelmann W, Cohen E. 2008. Comparative analysis of meiotic progression in female mice bearing mutations in genes of the DNA mismatch repair pathway. Biology of Reproduction 78, 462–471. https://doi.org/10.1095/biolreprod.107.065771

Kim H, Kim Y, Lee A. 2008. SEBOX is essential for early embryogenesis at the two-cell stage in the mouse. Biology of Reproduction 79, 1192–1201. https://doi.org/10.1095/biolreprod.108.068478

Klein C, Troedsson H. 2011 Transcriptional profiling of equine conceptuses reveals new aspects of embryo-maternal communication in the horse. Biology Reproduction 84, 872–885. https://doi.org/10.1095/biolreprod.110.088732

Kong M, Diaz E, Morales P. 2009.Participation of the human sperm proteasome in the capacitation process and its regulation by protein kinase A and tyrosine kinase. Biology of Reproduction 80(5), 1026–1035. https://doi.org/10.1095/biolreprod.108.073924

Kwon J, Mochida K, Wang YL, Sekiguchi S, Sankai T, Aoki S, Ogura A, Yoshikawa Y, Wada K. 2005 Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biology of Reproduction 73(1), 29–35. https://doi.org/10.1095/biolreprod.104.037077

Latham E. 1999. Mechanisms and control of embryonic genome activation in mammalian embryos. International Review of Cytology 193, 71–124. https://doi.org/10.1016/s0074-7696(08)61779-9

Lee K, Yao Y, Kwok K, Xu J, Yeung W. 2002. Early developing embryos affect the gene expression patterns in the mouse oviduct. Biochemical and Biophysical Research Communication 292, 564–570. https://doi.org/10.1006/bbrc.2002.6676

Lee T, Bonneau R, Giraldez J. 2014d. Zygotic genome activation during the maternal-to-zygotic transition. Annual Review of Cell and Developmental Biology. https://doi.org/10.1146/annurev-cellbio-100913-013027

Le Masson F, Razak Z, Kaigo M, Audouard C, Charry C, Cooke H, Westwood J, Christians E.  2011. Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Molecular and Cellular Biology 31(16), 3410–3423. https://doi.org/10.1128/mcb.05237-11

Li L, Baibakov B, Dean J. 2008. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Developmental Cell 15, 416- 425. https://doi.org/10.1016/j.devcel.2008.07.010

Lykke-Andersen K, Gilchrist M, Grabarek J, Das P, Miska E, Zernicka-Goetz M. 2008. Maternal Argonaute 2 is essential for early mouse development at the maternal – zygotic transition. Molecular Biology of the Cell 19(10, 4383–4392. https://dx.doi.org/10.1091%2Fmbc.E08-02-0219

Mannaertz B, Uilenbrock J, Schot P, de Leeuw R. 1994. Folliculogenesis in hypophesectomized rats after treatment with recombinant human follicle stimulating hormone. Biology of Reproduction 51(1), 72–81. https://doi.org/10.1095/biolreprod51.1.72

McDaniel P, Wu X. 2009. Identification of oocyte-selective NLRP gene in rhesus macaque monkeys (Macaca mulatta). Molecular Reproduction and Development 74, 577-584. https://doi.org/10.1002/mrd.20937

Metchat A, Akerfelt M, Bierkamp C, Delsinne V, Sistonen L, Alexandre H,Christians E. 2009. Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90alpha expression. Journal of Biological Chemistry 284, 9521–9528. https://dx.doi.org/10.1074%2Fjbc.M808819200

Mtango N, Sutovsky M, Susor A, Zhong Z, Latham K, Sutovsky P. 2012.Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. Journal of Cellular Physiology 227(4), 1592–1603. https://dx.doi.org/10.1002%2Fjcp.22876

Niu X, Martin G, Liu W, Henryon M, Ren K.  2019. Follicle-stimulating hormone (FSHβ) gene polymorphisms and associations with reproductive traits in Rex rabbits. Animal Reproduction Science 207, 36-43. https://doi.org/10.1016/j.anireprosci.2019.05.013

Pan H, Schultz R. 2011. SOX2 modulates reprogramming of gene expression in two- cell mouse embryos. Biology of Reproduction 85(2), 409-416. https://doi.org/10.1095/biolreprod.111.090886

Pennetier S, Perreau C, Uzbekova S, Thelie A, Delaleu B, Mermillod P, Dalbies-Tran R. 2006. MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Developmental Biology 6. https://doi.org/10.1186/1471-213x-6-26

Pope W, Xie S, Broerman D, Nephew K. 1990. Causes and consequences of early embryonic diversity in pigs. Journal of Reproduction and Fertility Supplement 40, 251–260.

Rosendo A, Druet T, Gogué J, Bidanel J. 2007. Direct responses to six generations of selection for ovulation rate or prenatal survival in Large White pigs. Journal of Animal Science 85, 356–364. http://dx.doi.org/10.2527/jas.2006-507

Rothschild M, Jacobsin D, Vaske C, Tuggle L, Wang T, Short G, Eckardt S, Sasaki A, Vincent D, McLaren O, Southwood H, van der Steen A, Mileham Plastow G. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proceeding of National Academy of Sciences 93, 201-205. https://dx.doi.org/10.1073%2Fpnas.93.1.201

Rothschild M, Messer L, Day A, Wales R, Short T, South­wood O, Plastow G. 2000. Investigation of the retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs. Mammalian Genome 11, 75–77.

Rothschild, MF, Soller M. 1997. Candidate gene analysis to detect traits of economic importance in domestic livestock. Probe 8, 13–22.

Sakai N, Sawada M, Sawada H. 2004.  Non-traditional roles of ubiquitin-proteasome system in fertilization and gametogenesis. International Journal of Biochemistry and Cell Biology 36(5), 776–784. https://doi.org/10.1016/s1357-2725(03)00263-2

Sartori R, Bastos r, Wiltbank C. 2010. Factors affecting fertilization and early embryo quality in single- and superovulated dairy cattle. Reproduction Fertility and Development 22, 151–158. https://doi.org/10.1071/rd09221

Schultz R. 2002. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reproduction Update 8, 323–331. https://doi.org/10.1093/humupd/8.4.323

Simon C, Moreno C, Remohi J, Pellicer A. 1998. Molecular interactions between embryo and uterus in the adhesion phase of human implantation. Human Reproduction 13(3), 216–233 233. https://doi.org/10.1093/humrep/13.suppl_3.219

Stowe H, Curry E, Calcatera S, Krisher R, Paczkowski M, Pratt S. 2012.Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on MicroRNA expression in porcine embryos. Gene 501(2), 198–205. https://doi.org/10.1071/RD17101

Sutovsky P. 2004. Visualization of sperm accessory structures in the mammalian spermatids, spermatozoa, and zygotes by immunofluorescence, confocal, and immunoelectron microscopy. Methods in Molecular Biology 253, 59–77. https://doi.org/10.1385/1-59259-744-0:059

Susor A, Ellederova Z, Jelinkova L, Halada P, Kavan D, Kubelka M, Kovarova H. 2007. Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1. Reproduction 134(4), 559–568. http://dx.doi.org/10.1530/REP-07-0079

Tess MW, Bennett GL, Dickerson GE. 1983. Simulation of genetic changes in life cycle efficiency of pork production. II – Effects of components on efficiency. Journal of Animal Science 56, 354-368. https://doi.org/10.2527/jas1983.562354x

Tong Z, Gold L, Pfeifer K, Dorward H, Lee E, Bondy C, Dean J, Nelson L. 2000. Mater, a maternal effect gene required for early embryonic development in mice. Nature Genetics 26(3), 267–268. https://doi.org/10.1038/81547

Waclawik A, Kaczmarek M, Blitek A, Kaczynski P, Ziecik A. 2017. Embryo maternal dialogue during pregnancy establishment and implantation in the pig. Molecular Reproduction and Development 84, 842–855. https://doi.org/10.1002/mrd.22835

Wang D, Fu L,Ning W, Guo L, Sun X, Dey SK, Chaturvedi R, Wilson KT, Dubois RN. 2014. Peroxisome proliferator-activated receptor δ promots colonic inflammation and tumor growth. Proceedings of the National Academy of Sciences of the United States of America 111(19), 7084-7089. https://dx.doi.org/10.1073%2Fpnas.1324233111

Wolf J. 2010. Heritabilities and genetic correlations for litter size and semen traits in Czech Large White and Landraces pigs. Journal of Animal Science 88(9), 2893-2903. https://doi.org/10.2527/jas.2009-2555

Wright W, Bolling C, Calvert E, Sarmento F, Berkeley V, Shea C, Hao Z., Jayes C, Bush A, Shetty J, Shore N, Reddi P, Tung S, Samy E, Allietta M, Sherman E, Herr C, Coonrod A. 2003. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Developmental Biology 256, 73–88. http://doi.org/10.1016/s0012-1606(02)00126-4

Wu X, Viveiros M, Eppig J, Bai Y, Fitzpatrick S, Matzuk M. 2003. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nature Genetics 33, 187–191. https://doi.org/10.1038/ng1079

Xia X, Yan C, Wu W, Zhou Y, Hou L, Zuo B, Xu D, Ren Z, Xiong Y. 2015. Characterization of the porcine peptidylarginine deiminase type VI gene (PADI6) promoter: Sp1 regulates basal transcription of the porcine PADI6. Gene 1119(15), 1151. https://doi.org/10.1016/j.gene.2015.09.042

Xing H, Wilkerson D, Mayhew C, Lubert E, Skaggs H, Goodson M, Hong Y, Park-Sarge O, Sarge K. 2005. Mechanism of hsp70i gene bookmarking. Science 307, 421–423. https://doi.org/10.1126/science.1106478

Yang H, Wu Z. 2018. Genome Editing of Pigs for Agriculture and Biomedicine. Frontiers in Genetics 9, 360. https://doi.org/10.3389/fgene.2018.00360

Yelich J, Pomp D, Geisert R. 1997. Detection of transcripts for retinoic acid receptors, retinal-binding protein, and transforming growth factors during rapid trophoblastic elongation in the porcine conceptus. Biology of Reproduction. 57,286–294. https://doi.org/10.1095/biolreprod57.2.286

Yi Y, Manandhar G, Sutovsky M, Li R, Jonáková V, Oko R, Park C, Prather R, Sutovsky P. 2007b. Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biology of Reproduction 77(5), 780–793. https://doi.org/10.1095/biolreprod.107.061275

Zhang K, Smith G. 2015. Maternal control of early embryogenesis in mammals. Reproduction, Fertility and Development 27(6), 880-896. https://doi.org/10.1071/rd14441

Zhao Y, Li N, Xiao L, Cao G, Chen Y, Zhan S, Chen Y, Wu C, Zhang J, Sun S, Xu X. 1999. Study of reverse transposon insertion mutations of porcine FSH β sub-unit and its relationship with porcine litter size. Science in China Series C 29, 81–86.

Zheng Z, Zhao M, Jia J, Heo Y, Cui X, Oh J, Kim N. 2013. Knockdown of maternal homeobox transcription factor SEBOX gene impaired early embryonic development in porcine parthenotes. Journal of Reproduction and Development 59(6), 557–562. https://dx.doi.org/10.1262%2Fjrd.2013-050

Ziecik A, Przygrodzka E, Jalali B, Kaczmarek M. 2018. Regulation of the porcine corpus luteum during pregnancy. Reproduction 156, R57–R67. https://doi.org/10.1530/rep-17-0662