Absorption capacity of lead by different lichenic species
Paper Details
Absorption capacity of lead by different lichenic species
Abstract
The use of bioindicator is very important for assessing the pollution intensity by accumulation of pollutants and lead in particular. The measurement of this accumulation in some organisms such as lichens and its effects on the physiological and morphological characteristics was found very effective to answer this problem. It is in this context that we have oriented our research whose objective is to determine the accumulating power of some lichenic species namely: Flavoparmelia sordians, Ramalina farinacea and Xanthoria parietina under the influence of three concentrations of lead nitrate: low, medium and high, respectively (0.207 gPb/l, 2.07 gPb/l and 20.7 gPb/l) in other parts highlight the impact of this accumulation on the Physiology (determination of chlorophyll) and morphology (morphological observation) of these species. The comparison between the three species for the accumulation of lead using the Fisher test revealed significant differences between all our species, while the ANOVA test for a factor showed results ranging from significant (p = 0,349 in Xanthoria parietina after treatment 4) to very highly significant (p = 0,000*** in all species after the last treatment) for the measured physiological parameters.
Alioua A, Maizi N, Maizi L, Tahar A. 2010. Characterization of pollution by the NO2 using twinning of a biological and physicochemical technique in the area of Annaba (Algeria). Pollution atmosphérique 200, 325-332. http://dx.doi.org/10.4267/pollutionatmospherique.1367.
Bargagli R, Mikhailova I. 2002. Accumulation of inorganic contaminants. In: Nimis PL, Scheidegger C, Wolseley PA, Eds. Monitoring with Lichens – Monitoring Lichens. The Netherlands: Kluwer, 65-84. http://dx.doi.org/10.1007/978-94-010-0423-7_6
Bergamaschi L, Rizzioa E, Giaveria G, Loppib S, Gallorinia M. 2007. Comparison between the accumulation capacity of four lichen species transplanted to an urban site. Environmental Pollution 148, 468–476. http://dx.doi.org/10.1007/978-94-010-0423-7
Brown DH. 1987. The location of mineral elements in lichens: implications for metabolism. Bibliotheca Lichenologica 25, 361–75. https://doi.org/10.1017/S0024282988000349
Caplun E, Petit D, Piccioto E. 1984. Le Plomb dans l’essence. La Recherche 152, 270-280.
Clerc P, Roh PD. 1980. Les lichens, indicateurs biologiques de la pollution atmosphérique, autour de la fabrique d’aluminium de Martigny (Valais, Suisse). Saussurea 11, 107-140.
Clijsters H, Van Assche F. 1985. Inhibition of photosynthesis by heavy metals. Photosynthesis Research 7, 31-40. https://doi.org/10.1007/BF00032920
Dagnelie P. 1999. Théorique et appliquée. Tome 2 : interférence statistique à une et à deux dimensions. Bruxelles- Université de Boeck et lacier, 659.
Deruelle S. 1978. Les lichens et la pollution atmosphérique. Bulletin d‘Ecologie 9, 87-128.
Deruelle S. 1983. Ecologie des lichens du bassin Parisien. Impact de la pollution atmosphérique (engrais, SO2, Pb) et relation avec les facteurs climatiques. PhD thesis, Pierre et Marie curie University. 356.
Deruelle S. 1992. Accumulation du plomb par les lichens. Bulletin de la Société Botanique de France, Actualités Botaniques 139, 99-109. http://dx.doi.org/10.1080/01811789.1992.10827092
Deruelle S. 1996. The reliability of lichens as bio monitors of lead pollution. Ecology 27, 285-290.
Deruelle S, Lallement R. 1983. Les lichens témoins de la pollution. Thèmes Vuibert Université Biologie, Paris, 108 p.
Deruelle S, Petit PJX. 1983. Preliminary studies of the net photosynthesis and respiration responses of some lichens to automobile pollution. Cryptogamie, Bryologie et Lichenologie 4, 269-278.
Folkeson L. 1981. Heavy-metal accumulation in the moss Pleurozium schreberi in the surroundings of two peat-fired power plants in Finland. Annales Botanici Fennici 18, 245-253.
Fornasiero RB. 2001. Phytotoxic effects of fluoride. Plant Science 161, 979-85. http://dx.doi.org/10.1016/S0168-9452(01)00499-X
Garty J, Galun M, Fuchs C, Zizapel N. 1977. Heavy metals in the lichens Caloplaca aurantiaca from urban and rural. Region in Israel (a comparative study). Water, Air and Soil Pollution 8, 171-188. http://dx.doi.org/10.1007/BF00294041
Garty J, Theiss HB. 1990. The localisation of lead in the lichen Ramalina duriaei. (De Not.) Bagl. Botanica Acta 103, 311-314. http://dx.doi.org/10.1111/j.14388677.1990.tb00166.x
Garty J, Galun M, Fuchs C, Zizapel N. 1977. Heavy metals in the lichens Caloplaca aurantiaca from urban and rural. Region in Israel (a comparative study). Water, Air and Soil Pollution 8, 171-188. http://dx.doi.org/10.1007/BF00294041
Georgiades Y, Chiron M, Joumard R. 1988. Establishment of atmospheric pollution standards for motor vehicles. Science of the Total Environment, Elsevier 77, 215-230. http://dx.doi.org/10.1016/0048-9697(88)90057-5
Goyal R, Seaward MRD. 1981. Metal uptake in terricolous lichens. Metal localisation within the thallus. New Phytologist 89, 631-643. http://dx.doi.org/10.1111/j.1469-8137.1981.tb02342.x
Hellmann H, Funck D, Rentsch D, Frommer WB. 2000. Hypersensitivity of an Arabidopsis thaliana Sugar Signalling Mutant Towards Exogenous Proline Application. Plant Physiol 123, 779-789. http://dx.doi.org/10.1104/pp.123.2.779
James PV. 1973. The effect of air pollutants other than hydrogen fluoride and sulfur dioxide on lichens. In Ferry BW, Baddeley MS, Hawksworth BL, eds. Air Pollution and Lichens. London, Athlone Press, 143-175. https://doi.org/10.1017/S0024282974000168
Kardish N, Ronen R, Bubrick P, Garty J. 1987. The influence of air pollution on the concentration of ATP and on chlorophyll degradation in the lichen Ramalina duriaei (De Not.) Bagl. New Phytologist 106, 697-706. https://doi.org/10.1111/j.1469-8137.1987.tb00170.x
Maizi N, Alioua A, Tahar A, Semadi F, Fadel D. 2010. The use of inferior plants as bioindicators of automobile lead pollution in the area of Annaba (Algeria). Journal of Materials and Environmental Science1, 251-266.
Market B. 1993. Plant as biomonitors/Indicators for heavy metals in the terrestrial environment. weinheim VCH. press: 670.
Pilegaard K, Rasmussen L, Gydesen H. 1979. Atmospheric background deposition of heavy metals in Denmark monitored by epiphytic cryptogams. Journal of Applied Ecology 16, 843-853. https://doi.org/10.2307/2402858
Prasad DDK, Prasad ARK. 1987. Altered delta- aminolévulinc acid metabolism by lead and mercury in germinating seedlings of (Pennisetum typhoideum). Journal of plant physiology 127, 241-249. http://dx.doi.org/10.1016/S0176-1617(87)80143-8
Rahali M. 2002.Cartographie de la pollution de la région d’Alger en utilisant un lichen Xanthoria parietina comme bioaccumulateur. Pollution Atmosphérique175, 421-432. http://dx.doi.org/10.4267/pollutionatmospherique.2605
Rahali M. 2003. Etude de la pollution plombique et globale dans la région d’Alger, en utilisant les lichens comme indicateurs biologiques. Thèse de doctorat d’état, Institut national agronomique, Algérie, 302.
Rao DN, Le Blanc BF. 1965. Effects of sulfur dioxyde on the lichen alga, with special reference to Chorophyll. Bryologist 69, 69-75.
Ronen R, Canaani O, Garty J, Cahen D, Malkin S, Galun M. 1984. The effect of air pollution and bisulfite treatment in the lichen Ramalina duriaei studiedby photoacoustics. In: Sybesma C, ed. Proceedings of the VIth International Congress on Photosynthesis, August 1-6, 1983, Brussels, Belgium 4, 251-254.
Seaward MRD, Bylinska EA, Goyal R. 1981. Heavy metal content of Umbilicaria species from the sudety region of SW Poland. Oikos 36, 107-113. https://doi.org/10../3544386
Semadi A, Deruelle S. 1993. Lead pollution monitoring by transplanted lichens in Annaba area (Algeria).Pollution atmospherique 140, 86-102. http://dx.doi.org/10.4267/pollutionatmospherique.4304
Serradj Ali Ahmed M. 2007. Evaluation of acid pollution using two bioindactors: bark of Fraxinus angustifolia and lichen Xanthoria parietina. Impact on vegetation. PhD Thesis in Science, University of Badji Mokhtar, Algeria, 19.
Serradj Ali, Ahmed M, Boumedris ZE, Djebar MR, Tahar A. 2014. Responses of antioxidants in Flavoparmelia caperata (L.) Hale to the atmospheric pollution air at two urban and semi-urban areas in the region of Annaba (East of Algeria). Pollution atmospherique 221, 1-13. http://dx.doi.org/10.4267/pollutionatmospherique.2674.
Serradj Ali, Ahmed M, Boumedris ZE, Tahar A, Djebar MR. 2016. Impact of an atmosphere rich in sulfur dioxide on a foliose lichen species Flavoparmelia caperata (L) Hale from the El Kala National Park (northeast Algerian).International Journal of Scientific Research in Science and Technology (IJSRST) 2, 21-27.
Wietschorke GM, Luhmann HJ, Kreeb KH. 1990. Single and combined effects of lead, herbicide and temperature on net photosynthetic rate of Hypogymnia physodes, a corticolous lichen. Photosynthetica 24, 102 – 109.
Zambrano A, Nash TH. 2000. Lichen responses to short term transplantation in Desierto de Los Leones, Mexico City. Environmental Pollution 107, 407- 412. http://dx.doi.org/10.1016/S0269-7491(99)00169-4
Naila Maizi, Nabil Kadri, Monia Serradj Ali Ahmed (2017), Absorption capacity of lead by different lichenic species; IJB, V10, N2, February, P61-71
https://innspub.net/absorption-capacity-of-lead-by-different-lichenic-species/
Copyright © 2017
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0