An investigation of tissue culture and co-cultures of different explants in Calendula officinalis

Paper Details

Research Paper 01/12/2013
Views (745)
current_issue_feature_image
publication_file

An investigation of tissue culture and co-cultures of different explants in Calendula officinalis

Ali Ashraf Mehrabi, Ehsan Khodadadi, Zeinab Sadeghi, Lia shooshtari
Int. J. Biosci. 3(12), 201-205, December 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

Two experiments were conducted separately to investigate the effects of the medium and explant types on the callus induction and regeneration of Calendula officinalisas a medicinal plant. In the first experiment, explants were placed on a ¼ MS medium on three levels of NAA (1-Naphthaleneacetic acid) and KIN (Kinetin) in sterile conditions. The parameters, time to callus initiation, callus volume, and the percentage of callus induction were measured to evaluate the callus condition in this experiment. Variance analysis of the results on the first experiment showed that there was no considerable difference in terms of callus induction in mediums with a combination of hormones, while the effect of explant source on these traits was significant. In the second experiment (co-culturing of different explants), main effects of cotyledon, hypocotyl and meristem explants as single cultures, and also effects of cotyledon and meristem, hypocotyl and meristem explants as co-cultures in the two mediums, KIN + NAA and TDZ (Thidiazuron) + IBA (Indole-3-butyric acid), were studied. The results of the second experiment showed that co-cultured explants have a better regeneration. It also indicated a better condition for traits related to the root of the co-culture system. Moreover, the impact of the two explants, hypocotyland meristem, together onrootingandregenerationwas remarkable.

Anna G. Wirginig J. 2002. Initation and growth characteristics of suspension cultures of Calendula Officinalis cell. Plant cell. Tissue and organ culture 71, 29-40. http://dx.doi.org/10.1023/A:1016553909002

Bernath J. 2000. medicinal and aromatic plants. Mezzo. Pabl. Budapest, 667.

Bilia AR, Bergonzi MS, Gallori S, Mazzi G, Vincieri FF. 2002. Stability of the constituents of Calendula Officinalis milk thistle and passion flower tinetures, journal of pharmaceutical and biomedical analysis 30, 613-624. http://dx.doi.org/10.1016/S0731-7085(02)00352-7

Coco S, Uranbey A, Pek KM, Khawar EO, Sariham MD, Kaya IP, Armakisiz S. 2004. Adventitious shoot regeneration and micro propagation in Calendula Officinalis biologia, Plantarum 43, 499-451. http://dx.doi.org/10.1023/B:BIOP.0000041102.79647.b6

Duke JA. 1985. handbook of medicinal herbs crop ,press Bocan raton, florida.

Grezelak A, Wirnia J. 2002. Initiation and growth characteristics of suspension cultures of Calendula  Officinalis cell, Plant Cell, Tissue and Organ Culture 71, 29–40, 2002 71, 29-40. http://dx.doi.org/10.1023/A:1016553909002.

Martin F. 2005. a growers manual for calendula officinalis

Paploe V, Andres C, Maelena V, Octavio PL. 2002. Plant regeneration via organogenesis in Calendula officinalis. Plant cell, tissue and organ cultuve 69, 279-283.

Pout GR, Samantaras DA. 2000. In vitro manipulation and propagation of medicinal plnats biotechnology advances 18, 91-120.

Ramachandra SR, Rauishankar GA. 2002. Chemical factories of secondary metabolites. Plant cell cultures, Biotechnology advance 20, 101-153.

Tripathi L. 2003. Role of biotechnology in medicinal plants. Tropical journal of pharmaceutical research 22, 243-253. http://dx.doi.org/10.4314/tjpr.v2i2.14607.

Related Articles

Medicinal plants sold in Daloa markets: Traditional knowledge and Public health issues

Kouakou Yao Bertin, Kouakou Assoman Serge Alain, Kouame Yao Anicet Gervais, Malan Djah François, Bakayoko Adama, Int. J. Biosci. 27(2), 200-210, August 2025.

Agronomic performance and profitability of coffee wildlings using different soil media mixtures

Maribel L. Fernandez, Ricardo B. Casauay, Ronel A. Collado, Int. J. Biosci. 27(2), 189-199, August 2025.

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.