Antiangiogenic activity of Coccinia grandis ethanolic leaf extract using the chorioallantoic membrane assay in anas platyrhynchos embryos

Paper Details

Research Paper 30/07/2021
Views (907) Download (176)
current_issue_feature_image
publication_file

Antiangiogenic activity of Coccinia grandis ethanolic leaf extract using the chorioallantoic membrane assay in anas platyrhynchos embryos

Vivian C. Peligro
Int. J. Biomol. & Biomed.13( 1), 1-8, July 2021.
Certificate: IJBB 2021 [Generate Certificate]

Abstract

Vascular growth is vital for every aspect of tumor growth. Coccinia grandis is one of the medicinal plants in many countries because of its diverse ethnomedicinal uses. Hence, this study aimed to evaluate the antiangiogenic activity of C. grandis ethanolic leaf extract using the Chorioallantoic Membrane Assay (CAM) in Anas platyrhynchos. Thirty pieces of six-day-old duck eggs were used in the study with triplicates in each treatment namely: positive control (vitamin A), negative control (ethanol), and C. grandis ethanolic extracts in 1µg/mL, 3µg/mL, and 5µg/mL. These were then applied to six-day old duck embryos and were incubated at 37°C with 65.5% humidity. The eggs were then harvested on the tenth day of incubation. The antiangiogenic effect of C. grandis ethanolic leaf extract was evaluated by taking the average number of branch points using the chorioallantoic membrane. Results revealed that in negative control angiogenesis was induced while in the different treatments of the ethanolic leaf extracts, inhibition reduced significantly. Statistical analysis supports that there was a significant difference in the antiangiogenic effect of C. grandis ethanolic leaf extract using the CAM assay on the vascularization of duck embryos. It showed that the higher the dosage, the lesser the branch points and the smaller the ducks. Further, C. grandis ethanolic leaf extract contains alkaloids and tannins which are responsible for the anti-angiogenic property and antiproliferative effects of the extract. Thus, it indicated that C. grandis ethanolic leaf extract may have a potential and promising source of chemotherapeutic agent against tumors.

VIEWS 339

Alamgir AN, Minhajur Rahman, Ataur Rahman M. 2014. Phytochemical Characteristics, Antimitotic, Cytotoxic and Antiinflamatory Activities of Coccinia grandis (L.) J. Voigt. Journal of Pharmacognosy and Phytochemistry 3(1), 222-225.

Ankri R, Peretz D, Motiei M, Sella-Tavor O, Popovtzer R. 2013. New optical method for enhanced detection of colon cancer by capsule endoscopy. Nanoscale 5, 9806-11.

Balke M, Neumann A, Kersting C 2010. Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane. BMC research notes 3, 58.

Beecher GR. 2003. Overview of Dietary Flavonoids: Nomenclature, Occurrence and intake. The Journal of Nutrition 133(10), p. 3248-3254.

Bhattacharya B, Pal P, Lalee A, Mal DK, Samanta A. 2011. In vitro anticancer activity of Coccinia grandis (L.) Voigt. (Family: Cucurbitaceae) on Swiss albino mice. J Pharm Res 4, 567-569.

Chun ME. 2001. Biology and host specificity of Melittia oedipus (Lepidoptera: Sesiidae), a biological control agent of Coccinia grandis (Cucurbitaceae). Proceedings of the Hawaiian Entomological Society 35, 85-93.

Conn EM, Botkjaer KA, Kupriyanova TA, Andreasen PA, Deryugina EI, Quigley JP. 2009. Comparative analysis of metastasis variants derived from human prostate carcinoma cells: roles in intravasation of VEGF-mediated angiogenesis and uPA-mediated invasion. The American journal of pathology 175, 1638-52.

Fajardo WT, Cancino LT, Dudang EB, Suratos ECM, Macayana FB. 2015. Phytochemical Analysis and Antiangiogenic Potential of Gmelina Arborea Roxb. (Paper Tree) Fruit Exocarp Using Duck Chorioallantoic Membrane (Cam) Assay. Asia Pacific Journal of Multidisciplinary Research, Vol. 3, No. 5, P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Gill NS, Kaur P, Arora R. 2014. Review on Coccinia cordifolia auct. Non (L) Cogn. Int J Adv Pharmaceutical 5, 234-241.

Kampa M, Nifli A-P, Notas G, Castanas E. 2007. Polyphenols and cancer cell growth. PubMed [17] Bravo L. Polyphenols: Chemistry, dietary source.

Karagiz AN, Turgut-kara O, Cakir R, Demirgan S. 2007. Ari. Cytotoxic activity of crude extracts from Astragalus chrysochlorus (Leguminosae). Biotechnol and Biotechnol 21(2), 220-222.

Keshavarz M, Bidmeshkipour A, Mostafaie K, M-Motiagh HR. 2011. Anti-tumor activity of Salvia officinalis is due to its angiogenic, antimigratory and antiproliferative effects. Cell Journal, vol. 12 no. 4, winter pp. 477.

Lokman NA, Elder AS, Ricciardelli C, Oehler MK. 2012. Chick Chorioallantoic Membrane (CAM) Assay as an In Vivo Model to Study the Effect of Newly Identified Molecules on Ovarian Cancer Invasion and Metastasis. International journal of molecular sciences 13, 9959-70.

Miranda-Goncalves V, Honavar M, Pinheiro C. 2013. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-oncology 15, 172-88.

Monalisa MN, Al-Nahain A, Rahmatullah M. 2014. Coccinia grandis: a plant with multiple ethnomedicinal uses. World journal of pharmacy and pharmaceutical sciences. Volume 3, Issue 9, 1382-1394.

Muslim NS, Nassar ZD, Aisha A, Shafei A, Idris N, Majid AM. 2012. Antiangiogenesis and antioxidant activity of ethanol extracts of Pithecellobium jiringa. BMC Complementary and Alternative Medicine 12, 210.

Nagare S, Deokar GS, Nagare R, Phad N. 2015. Review on Coccinia grandis (L.) voigt (Ivy Gourd). World J Pharm Res 4910, 728-743.

Osbourn A. 1996. Preformed Antimicrobial Compounds and Plant Defense Against Fungal Attack. Retrieved on November 16, 2018 fromdwww.cell.com/trends/plant-science/abstract/S1360-1385 (96)80016-1

Palmer TD, Lewis J, Zijlstra A. 2011. Quantitative analysis of cancer metastasis using an avian embryo model. Journal of visualized experiments: JoVE.

Pekamwar SS, Kalyankar TM, Kokate SS. 2013. Pharmacological activities of Coccinia grandis – a review. J App Pharm Sci 3, 114-119.

Periera A, Vieira G, Mateus Santana M, Biondoro Gois and D.m. Goncales Sant’Ana. 2015. Tannins obtained from medicinal plants extracts against pathogens: antimicrobial potential. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs (A. Méndez-Vilas, Ed.) p. 228-235.

Ribatti D. 2012. Chicken chorioallantoic membrane angiogenesis model. Methods in molecular biology 843, 47-57.

Sakharkar P, Chauhan B. 2017. Antibacterial, antioxidant and cell proliferative properties of Coccinia grandis fruits. Avicenna J Phytomed, Epub ahead of print.

Saxena J, Rajeev N, Dharmendra S, Abhishek Gupta. 2013. Phytochemistry of Medicinal Plants. Journal of Pharmacognosy and Phytochemistry 1(6),168.

Smith AC. 1981. Flora Vitiensis Nova: A New Flora of Fiji. Vol. 2. Lawai, Kauai, HI: National Tropical Botanical Garden, 810 pp.

Stangl V, Dreger H, Stangl K, Lorenz M. 2007. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc. Res 73(2), 348- 358.

Subaustemc, Kupriyanova TA, Conn EM, Ardi VC, Quigley JP, Deryugina EI. 2009. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clinical & experimental metastasis 26,1033-47.

Taizi M, Deutsch VR, Leitner A, Ohana A, Goldstein RS. 2006. A novel and rapid in vivo system for testing therapeutics on human leukemias. Experimental hematology 34, 1698-708.

Tamilselvan N, Thirumalai T, Elumalai EK, Balaji R, David E. 2011. Pharmacognosy of Coccinia grandis – a review. Asian Pac J Trop Biomed 1, S299-S302.

Tantiado RG, Tan VP. 2012. Evaluation of the Angiosuppresive Activity of Tinospora rumphii Boerl. Stem Extract Using the Chorioallantoic Membrane Assay in Anas platyrhynchos Embryos. International Journal of Bio- Science and Bio-Technology 4(2), 93-102.

Tufan AC, Satiroglu-Tufan NL. 2005. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Current Cancer Drug Targets 5, 249-2664.

Vinoth Prabhu V, Chidambaranathan N, Gopal G. 2011. A Historical Review on Current Medication and Therapies for Inducing and Inhibiting Angiogenesis. J. Chem. Pharm. Res 3(2), 526-533.

Warnock G, Turtoi A, Blomme A. 2013. In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 54, 1782-8.

Westhoff MA, Zhou S, Nonnenmacher L. 2013. Inhibition of NF-kappa B signaling ablates the invasive phenotype of glioblastoma. Molecular cancer research: mcR 11,1611-23.

Whistler WA. 1995. Wayside Plants of the Islands. Hong Kong: Everbest Printing Company.

Wittig-Blaich SM, Kacprzyk LA, Eismann T. 2011. Matrix-dependent regulation of AKT in Hepsin-overexpressing PC3 prostate cancer cells. Neoplasia 13, 579-89.

Yadav G, Mishra A, Tiwari A. 2010. Medical properties of Ivy Gourd (Cephalandra indica) – a review. Int J Pharm Res Dev 2, 92-98.

Zannah F, Amin M, Suwono H, Lukiati B. 2017. Phytochemical screening Diplazium esculentum as medical plant from Central Kalimantan, Indonesia. In AIP Conference Proceedings (Vol. 1844, No. 1, p. 050001). AIP Publishing.