Antioxidant glutathione dependent system response to in vivo exposure to cadmium and copper in Perna perna of the Gulf of Annaba (Algeria)

Paper Details

Research Paper 01/05/2018
Views (299) Download (6)

Antioxidant glutathione dependent system response to in vivo exposure to cadmium and copper in Perna perna of the Gulf of Annaba (Algeria)

Wyllia Khati, Ali Banaoui, Michele Roméo, Yousria Gasmi
J. Bio. Env. Sci.12( 5), 81-88, May 2018.
Certificate: JBES 2018 [Generate Certificate]


In order to use the antioxidant glutathione-dependent system as a biomarker of oxidative stress, the effect of metals on the metabolism of glutathione has been studied at the gills of the African mussel Perna perna living the easternmost Gulf of Annaba (Algeria). The response of the glutathione-S- transferase activity (GST) and the rates of Glutathione (GSH) was evaluated from these bivalves, after in vivo exposure to three concentrations of Cadmium (50, 100 and 200 μg/l) and copper (10, 15 and 25 μg/l) during 7 days. The analyses showed a significant decrease of GSH levels depending on the concentration of cadmium in the medium compared to controls. For the GSH levels, it significantly decreased in exposed bivalves to different concentrations of copper, while the GST activity was strongly inhibited at 25 μg/l of Cu. In fact, Cadmium seems to increase GST activity using glutathione as a substrate which caused a decrease of GSH rates in the exposed mussels, while at the highest dose tested the GST was not required so other enzymes probably metallothioneins (metals detoxification proteins) support the function of antioxidant defense. In the other hand, bioaccumulation of the two metals (Cd) in exposed mussels seems to be not correlated with added concentrations. This situation can be related to the hypothesis that the antioxidant GSH dependent system is most likely involved in this phenomenon. The tested system in Perna perna, reported in this study may be a good biomarker to assess contamination of the marine environment particularly by metals.


Almeida EA, Miyamoto S, Bainy ACD, De Medeiros MHG, Di Mascio P. 2004. Protective effect of phospholipid hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals in Marine Pollution Bulletin. 49, 386–392.

Amiard JC, Amiard-Triquet C. 2008. Les  Biomarqueurs  dans l’évaluation  de  l’état écologique des milieux aquatiques. Lavoisier librairie.375 p.

Bensa JC. 2000.  Mort et stress cellulaire application à l’immunologie PCEM1.

Bi WX, Kong F, Hu XY, Cui X. 2007. Role of glutathione in detoxification of copper and cadmium by yeast cells having different abilities to express cup1 protein. Toxicology Mechanisms and Methods Journal 17(6),371.

Bradford MM. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry.72, 248-254.

Canesi L, Viarengo A, Leonzio C, Filippelli M, Gallo G.1999. Heavy metals and glutathione metabolism in mussel tissues. Aquatic Toxicology Journal46,67-76.

Damiens G, Mouneyrac C, Quiniou F, His E, Gnassia-Barelli M,Romeo M. 2006. Metal bioaccumulation and metallothionein concentrations in larvae of Crassostrea gigas. Environmental Pollution.140, 492-499.

Florent Martin. 2003. Vanin-1 a New Molecular Regulator of Oxidative Stress and Inflammation. Centre d’Immunologie de Marseille-Luminy (CIML), INSERM U136 – CNRS UMR6102-Thesis inMediterranean University, France.

Gayffon M, Garnier–Laplace J. 2009. Toxicologie nucléaire environnementale et humaine. Lavoisier  librairie 746p.

Geret F, Serafim A, Barreira L, Bebianno MJ. 2002. Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in the gills of the clam Ruditapes decussatusBiomarkers7, 242-256.

Geret F, Serafim A, Bebiano MJ. 2003. Antioxidant Enzyme Actvities, Metallothioneins and Lipid Peroxidation as Biomarkers in Ruditapes decussatus. Ecotoxicology 12(3), 417- 426.

Habig WH, Jacoby WB.1974.The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, (249), 7130-7139.

Hoare K, Beaumont K, Davenport J. 1995.Variation among populations in the resistance of Mytilus edulis embryos to copper: adaptation to pollution? Marine Ecology Progress Series. 120, 155-161.

Khati W, Ouali K, Catherine M, Banaoui A. 2012. Metallothioneins in Aquatic Invertebrates:Their Role in Metal Detoxification and their use in Biomonitoring. Energy Procedia, 18,784-794.

Lenartova V, Holovska K, Martinez-Lara E, Lopez-Barea J, Barcena JA, Rosival I. 1996. Changes in GST- isoenzyme pattern of some organs of sheep exposed to different levels of pollution. Comparative Biochemistry and Physiology. 114C,153-158.

Moustaid K, Nasser B, Baudrimont I, Anane R, Idrissi M, Bouzidi A, Creppy EE. 2005. Évaluation comparée de la toxicité des moules Mytilus galloprovincialis de deux sites du littoral atlantique marocain sur des souris. Comptes Rendus de Biologie. 328, 281-289.

Risso-de Faverney C, Devaux A, Lafaurie M, Girard JP, Bailly B, Rahmani R. 2001. Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygen species. Aquatic Toxicology Journal. 53,65-76.

Roméo M, Frasila C, Gnassia-Barelli M, Damiens G, Micu D, Mustata G.2005. Biomonitoring of trace metals in the Black Sea (Romania) using mussels Mytilus galloprovincialis. Water Research (39)4, 596-604.

Sahar  MN,  Pourkhabbaz A,  Afshari  R. 2014. Analysis and Determination of Trace Metals (Nickel, Cadmium, Chromium, and Lead) in Tissues of Pampus argenteus and Platycephalus indicus in the Hara Reserve, Iran. Journal of Toxicology : 576-496. 

Sanchez W, Porcher JM. 2009. Utilisation des biomarqueurs pour la caractérisation de l’état écotoxicologique des masses d’eau. Techniques Sciences Méthodes, ASTEE/EDP Sciences, 29-38 P.

Silvestre F, Jean-François D, Dumont V, Dieu M, Raes M, Devos P.2006.  Differential protein expression profiles in anterior gills of Eriocheir sinensis induced by cadmium exposure. Aquatic Toxicology Journal; 76(1),46-58.

Taylor A, Bill M. 2013. Do laboratory toxicity tests replicate “real world” exposures? Integrated Environmental Assessment and Management, 9(2), 348-349.

Torres MA, Testa CP, Gaspari C, Masutti MB, Panitz CMN, Curi-Pedrosa R, Almeida EA, Di Mascio P, Wilhelm Filho D. 2002. Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Marine Pollution. Bulletin. 44, 923–932.

Tsangaris C, Kaparou D, BordbarN, SimbouraG, Karris N. 2015. An integrated investigation of biomarkers’ response in crabs (Liocarcinus depurator) and benthic indices at a metalliferous waste discharge area in North Evoikos gulf, Greece. Toxicological and Environmental Chemistry 98, 1211-1226.

Valko M, Morris H, Cronin MT. 2005. Metals toxicity and oxidative stress. Current Medicinal Chemistry Journal, 12(10),1161-208.

Vlahogianni TH, Vlavanidis A. 2007. Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis. Chemistry and Ecology Journal, p. 361-371.

Weckbecker G, Cory JG. 1988. Ribonucleotide reductase activity and growth of glutathione depleted mouse leukaemia.LI210 cells in vitro,Cancer Letters.40, 257-264.