Available zinc levels in soils of Argentina

Paper Details

Research Paper 01/11/2015
Views (214) Download (2)

Available zinc levels in soils of Argentina

Hernán Sainz Rozas, Marino Puricelli, Mercedes Eyherabide, Pablo A. Barbieri, Hernán E. Echeverría, Nahuel I. Reussi Calvo, Juan P. Martínez
Int. J. Agron. Agri. Res.7( 5), 59-71, November 2015.
Certificate: IJAAR 2015 [Generate Certificate]


Adequate grain zinc (Zn) concentration is important because of its influence on human health. The Argentina Pampas region (APR) provides between 86% and 90% of total grain exports by the country. Soils of the Argentina Pampas region had high fertility under pristine condition but intensification of agriculture, increasing grain yields, and poor or no Zn fertilization could reduce soil available Zn. The objectives of this work were to determine the distribution of available Zn in agricultural and pristine soils of the Argentina Pampas region and its relationship with some chemical characteristics. Soil samples (0-20 cm depth) were collected and georeferenced (approximately 550 for each condition), and soil organic matter, pH, extractable phosphorus, cation exchange capacity, and available Zn by extraction with diethylenetriaminepentaacetic acid (DTPA-Zn) were measured. For geostatistical analysis, indicator kriging (non-parametric method) was utilized as interpolation method. Agriculture decreased soil organic matter, pH, extractable phosphorus and DTPA-Zn (26.9, 4.6, 57.8 and 69.5%, respectively). Relative decrease of DTPA-Zn was only significantly associated with the relative decrease of soil organic matter, although this association was low (r=0.41). Regionally, the DTPA-Zn distribution was very heterogeneous and soil organic matter, pH, extractable phosphorus and cation exchange capacity did not adequately predicted soil DTPA-Zn concentrations (r2=0.16 to 0.26). Agricultural soils of northern, northwestern and southwestern APR (approximately 12,150,000 ha) showed DTPA-Zn values below 1 mg kg-1, and therefore would present some degree of Zn deficiency for sensitive crops.


Alloway BJ. 2009. Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry Health 31, 537-548.

Alma AR, Salbu B, Singh BR. 2000. Changes in partitioning of cadmium-109 and zinc-65 in soil as affected by organic matter addition and temperature. Soil Science Society of America Journal 64, 1951-1958.

Anthony P, Malzer G, Sparrow S, Zhang M. 2012. Soybean yield and quality in relation to soil properties. Agronomy Journal 104, 1443-1458.

Bender RR, Haegele JW, Ruffo ML, Below FE. 2013. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Soil Science Society of America Journal 105, 161-170.

Brady N, Weil R. 2008. Soil organic matter. In: N. Brady, R. Weil (ed.) the nature and properties of soil. 14th ed. Prentice-Hall, inc. Upper Saddle River, New Jersey. pp. 495-591.

Bray RH, Kurtz LT. 1945. Determination of total, organic and available form of phosphorus in soil. Soil Science 59, 360-361.

Cakmak I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?. Plant and Soil 302, 1-17.

Catlett KM, Heil DM, Lindsay WL, Ebinger MH. 2002. Soil chemical properties controlling Zinc +2 activity in 18 Colorado soils. Soil Science Society of America Journal 66, 1182-1189.

Chapman HD. 1965. Cation-exchange capacity. In: AL. Page, RH. Miller, DR. Keeney (ed.) Methods of soil analysis. ASA and SSSA, Madison, WI pp. 891-901.

El-Kherbawy MI, Sanders JR. 1984. Effects of pH and phosphate status of a silty clay loam on manganese, zinc, and copper concentrations in soil fractions and clover. Journal of the Science of Food and Agriculture 35, 733-739.

ESRI Arc Map 9.2. 2009. License 37142261_v9. ArcGIS Desktop.

Fabrizzi KP, Picone L, Berardo A, García FO. 1998. Efecto de la fertilización nitrogenada y fosfatada en las propiedades químicas de un Argiudol Típico. Ciencia del Suelo 16, 71-76.

FAOSTAT. 2015. Food and agriculture exports and imports. (http://faostat.fao.org/site/342/default.aspx) 09. 02. 2015.

Galantini J, Rosell R. 2006. Long-term fertilization effects on soil organic matter quality and dynamics under different production systems in semiarid Pampean soils. Soil and Tillage Research 87, 72-79.

Gallet S, Jahn B, Van Vliet Lanoe B, Dia A, Rosello E. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters 156, 157-172.

García FO, Berardo A. 2006. Trigo. In: HE. Echeverría, FO. García (eds.) Fertilidad de Suelos y Fertilización de Cultivos. Ediciones INTA. Buenos Aires pp. 99-121.

Goovaerts P. 1997. Geostatistics for natural resources evaluation. Oxford University Press, New York.

Goovaerts P. 2001. Geostatistical modelling of uncertainty in soil science. Geoderma. 103, 3-26.

Goovaerts P. 2009. AUTO-IK. a 2D indicator kriging program for the automated non-parametric modeling of local uncertainty in earth sciences. Computers and Geosciences 35, 1255-1270.

Gutiérrez Boem F, Scheiner JD. 2006. Soja. In: HE. Echeverría, FO. García (ed.) Fertilidad de Suelos y Fertilización de Cultivos. Ediciones INTA. Buenos Aires pp. 283-300.

Havlin JL, Soltanpour PN. 1981. Evaluation of the NH4HCO3-DTPA soil test for iron and zinc. Soil Science Society of America Journal 45, 70-75.

Heuvelink GBM, Webster R. 2001. Modelling soil variation: past, present and future. Geoderma 100, 269-301.

Heuvelink GBM. 1996. Identification of field attribute error under different models of spatial variation. International Journal of Geographical Information Systems 10, 921-935.

Hotz C, Brown KH. 2004. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin 25, 94-204.

INTA 1990. National Agricultural Technology Istitute. Soil Atlas of Argentina. Scale 1:500000 and 1:1000000. Tomo I y II. Secretariat of Agriculture, Livestock and Fisheries. INTA. Research Center of Natural Resources. Buenos Aires.

Isaaks EH, Srivastava RM. 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York.

Iyengar SS,  Martens  DC,  Miller  WP.  1981. Distribution and plant availability of soil Zn fractions. Soil Science Society of America Journal 45, 735-739.

Krohling DM. 1999. Sedimentological maps of the typical loessic units in North Pampa, Argentina. Quaternary International 62, 49-55.

Li BY, Zhou DM, Cang L, Zhang HL, Fan XH, Qin SW. 2007. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil and Tillage Research 96,166-173.

Lindsay WL, Norvell, WA. 1978. Devellopment of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42, 421-428.

Lindsay WL. 1991. Inorganic equilibria affecting micronutrients in soils. In: JJ. Mortvedt, FR. Cox, LM. Shuman, RM. Welch (eds.) Micronutrients in Agriculture 2nd ed. SSSA Book Series, Madison, WI pp. 89-112.

Liu XM, Wu JJ, Xu JM. 2006. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution 141, 257-264.

Lloyd CD, Atkinson PM. 2001. Assessing uncertainty in estimates with ordinary and indicator kriging. Computers and Geosciences 27, 929-937.

Mandal B, Gazra GZ, Pal AK. 1988. Transformation of zinc in soils under submerged conditions and its relation with zinc nutrition of rice. Plant Soil 106, 121-126.

Mandal LN, Mandal B. 1987a. Transformation of zinc fractions in rice soils. Soil Science 143, 205-212.

Mandal LN, Mandal B. 1987b. Fractionation of applied zinc in rice soils at two moisture regimes and levels of organic matter. Soil Science 144, 266-273.

Moraghan JT, Mascagni JR. 1991. Environmental and soils factors affecting micronutrient deficiencies and toxicities. In: JJ. Mortvedt, FR. Cox, LM. Shuman, RM. Welch (eds.) Micronutrients in Agriculture 2nd ed. SSSA Book Series, Madison, WI. 371-425.

Morrás HJM. 1999. Geochemical differentiation of quaternary sediments from the Pampean region based on soil phosphorus contents as detected in the early 20th century. Quaternary International 62, 57-67.

Oliver MA, Webster R. 2014. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 113, 56-69.

Panigatti JL. 2010. Argentina: 200 años, 200 Suelos. Buenos Aires. Ediciones INTA, Buenos Aires.

Ratto de Míguez S, Fatta N. 1990. Disponibilidad de micronutrimentos en suelos del área maicera núcleo. Ciencia del Suelo 8, 9-15.

Richards JR, Zhang H, Schroder JL, Hattey JA, Raun WR, Payton ME. 2011. Micronutrient availability as affected by the long-term application of phosphorus fertilizer and organic amendments. Soil Science Society of America Journal 75, 927-939.

Rivero, E., G.A. Cruzate, R. Turati, and D. Barbero. 2007. Azufre, boro y zinc: mapas de disponibilidad y respuesta en suelos de la Región Pampeana. In: Actas XVII Congreso Latinoamericano de la Ciencia del Suelo, León, Guanajuato, México. 17-21 Oct. 2007. Summary records pp. 67.

Sainz Rozas H, Echeverria HE, Angelini H. 2012. Fósforo disponible en suelos agrícolas de la región Pampeana y ExtraPampeana argentina. Revista de Investigaciones Agropecuarias 38, 33-39.

Sainz Rozas H, Echeverria HE, Angelini, HP. 2011. Niveles de materia organica y pH en suelos agrícolas de la región pampeana y extrapampeana. Ciencia del Suelo 29, 29-37.

Saito H, Goovaerts P. 2000. Geostatistical interpolation of positively skewed and censored data in a dioxin contaminated site. Environmental Science and Technology 34, 4228-4235.

SAS Institute, 1998. The SAS System release 6.12 for Windows. SAS Institute Inc., Cary, North Carolina.

Sayago JM. 1995. The argentine neotropical loess: an overview. Quaternary Science Reviews 14, 755-766.

Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591-611.

Shi J, Xu J, Huang P. 2008. Spatial variability and evaluation of status of micronutrients in selected soils around Taihu Lake, China. Journal Soils Sediments 8, 415-423.

Shuman LM. 1986. Effect of Liming on the distribution of manganese, copper, iron, and zinc among soil fractions. Soil Science Society of America Journal 50, 1236-1240.

SIIA, 2015. Integrated agricultural information system. (http://www.siia.gob.ar/estimacionesAgricolas/estim a2.php) 10.03.2015.

Sims JT. 1986. Soil pH effects on the distribution and plant availability of manganese, copper, and zinc. Soil Science Society of America Journal 50, 367-373.

Singh HJ, Takkar PN. 1981. Evaluation of efficient soil test methods for zn and their critical values in salt-affected soils for rice. Communication in Soil Science and. Plant Analysis 12, 383-406.

Studdert GA, Echeverría HE. 2000. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Science Society of America Journal 64, 1496-1503.

Teruggi ME. 1957. The nature and origin of Argentine loess. Journal of Sedimentary Petrology 27, 322–332.

Volmer Buffa E, Ratto SE. 2005. Disponibilidad de cinc, cobre, hierro y manganeso extraíble con DTPA en suelos de Córdoba (Argentina) y variables edáficas que la condicionan. Ciencia del Suelo 23,107-114.

Walkley A, Black IA. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37, 29-38.

Wang JJ, Harrel DL. 2005. Effect of ammonium, potassium, and sodium cations and phosphate, nitrate, and chloride anions on zinc sorption and lability in selected acid and calcareous soils. Soil Science Society of America Journal 69, 1036–1046.

Wei X, Hao M, Shao M, Gale WJ. 2006. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil Tillage Research 91, 120-130.

White JG, Welch RM, Norvell WA. 1997. Soil Zinc Map of the USA using Geostatistics and Geographic Information Systems. Soil Science Society of America Journal 61, 185-194.

Zárate MA. 2003. Loess of southern South America. Quaternary Science Reviews 22, 1987-2006.