Biodiesel production from microbial whole cell biocatalyst

Paper Details

Research Paper 01/08/2013
Views (823)
current_issue_feature_image
publication_file

Biodiesel production from microbial whole cell biocatalyst

Ravichandran Indumathi, Samuel Paul Raj
J. Biodiv. & Environ. Sci. 3(8), 94-101, August 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

Enzymatic mode of biodiesel production has recently gained a special attention among researchers because it eliminates the disadvantages of alkaline process such as end product recovery, waste water treatment, energy intensive and etc. Recently, considerable attention has paid in the direct use of intracellular lipase as a whole-cell biocatalyst (i.e immobilization of the enzyme secreting microbial cells) for biodiesel production where immobilization was carried out at the of microbial cell cultivation. The present investigation is focused on to establish appropriate conditions for immobilized whole cell biocatalyst for the production of biodiesel through transesterification. Fungi strains were isolated from wastes generated from oil industries and screened for the production of extracellular lipolytic enzymes and the most productive strain B2 was identified as Aspergillus sp. for further applications.

Akoh CC, Chang S, Lee G, Shaw J. 2007. Enzymatic approach to biodiesel production. Journal of Agricultural and Food Chemistry 55, 8995-9005.

Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H. 2001. Whole-cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal 8, 39–43.

Fukuda H, Hama S, Tamalampudi S, Noda H. 2008. Wholecell biocatalysts for biodiesel fuel production. Trends in Biotechnology 26, 668–673.

Fukuda H, Kondo A, Tamalampudi S. 2009. Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochemical Engineering Journal 44, 2–12.

Kuhad RC, Kapoor M, Rustagi R. 2004. Enhanced production of an alkaline pectinase by Streptomyces sp. RCK-SC by wholecell immobilization and solid-state cultivation. World Journal of Microbiology and Biotechnology 20, 257-263.

Li W, Du W, Liu D. 2007. Rhizopus oryzae IFO 4697 whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Process Biochemistry 42, 1481– 1485.

Meher LC, Vidya SD, Naik SN. 2006. Technical aspects of biodiesel production by transesterification–a review. Renewable and Sustainable Energy Reviews 10, 248–268.

Satyanarayana M, Muraleedharan C. 2011. Comparative Studies of Biodiesel Production from Rubber Seed Oil, Coconut Oil, and Palm Oil Including Thermogravimetric Analysis. Energy Sources Part A 33, 925-937.

Singh AP, Thompson JC, He BB. 2004. A Continuous-flow Reactive Distillation Reactor for Biodiesel Preparation from Seed Oils, ASAE/CSAE Annual International Meeting, Paper number: 046071.

Tamalampudi S, Talukder MR, Hama S, Numata T, Kondo A, Fukuda H. 2008. Enzymatic production of biodiesel from jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal 39, 185–189.

Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G. 2004. Biodiesel production technology, National Renewable Energy Laboratory NREL/SR-510-36244, Golden USA

Vicente G, Coteron A, Martinez M, Aracil J. 1998. Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Industrial Crops and Products 8, 29-35.

Xiao M, Mathew S, Obbard JP. 2009. Biodiesel fuel production via transesterification of oils using lipase biocatalyst. GCB Bioenergy 1, 115–125.

Related Articles

Impact of sewage sludge on plant diversity in the Nomayos area, in the central regions of Cameroon

Valerie Njitat Tsama, Yanick Borel Kamga, Valerie Guy Wafo Djumyom, François Victor Nguetsop, J. Biodiv. & Environ. Sci. 27(4), 95-105, October 2025.

An investigation of phytochemical constitutents and pharmacological activities of Strobilanthes andamanensis leaf extract

Deepika, V. Ambikapathy, S. Babu, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(4), 86-94, October 2025.

Assessing public awareness and knowledge of drinking water safety in Carmen, Cagayan De Oro City, Philippines

Ronnie L. Besagas, Romeo M. Del Rosario, Angelo Mark P. Walag, J. Biodiv. & Environ. Sci. 27(4), 80-85, October 2025.

Baseline floristics and above-ground biomass in permanent sample plots across miombo woodlands in different land tenure systems in Hwedza, Zimbabwe

Edwin Nyamugadza, Sara Feresu, Billy Mukamuri, Casey Ryan, Clemence Zimudzi, J. Biodiv. & Environ. Sci. 27(4), 65-79, October 2025.

Adapting to shocks and stressors: Aqua-marine processors approach

Kathlyn A. Mata, J. Biodiv. & Environ. Sci. 27(4), 57-64, October 2025.

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.

Ecological restoration outcomes in Rwanda’s Rugezi wetland: Biodiversity indices and food web recovery

Concorde Kubwimana, Jean Claude Shimirwa, Pancras Ndokoye, J. Biodiv. & Environ. Sci. 27(4), 32-40, October 2025.