Bioethanol production from non-edible macroalgae collected in the waters of STA. ANA, Cagayan using microbial fermenters

Paper Details

Research Paper 01/06/2020
Views (391) Download (32)
current_issue_feature_image
publication_file

Bioethanol production from non-edible macroalgae collected in the waters of STA. ANA, Cagayan using microbial fermenters

Andy L. Catulin
J. Bio. Env. Sci.16( 6), 33-44, June 2020.
Certificate: JBES 2020 [Generate Certificate]

Abstract

The study determines the bioethanol production from selected non-edible macroalgae using different microbial fermenters. The bioethanol production included two processes; first involving acid pretreatment was carried out in this study to further degrade the complicated sugar present in macroalgae for seven (7) days. Second, anaerobic fermentation using four microbial fermenters. The result of the study showed that there were fifteen (15) species of macroalgae collected and identified. Among the fifteen non-edible macroalgae, the top ten with the highest percentage dry weight includes the three species of Halimedeae with Percentage Dry Weight (PDW) of 33 per cent, 27 percent and 24 percent for H. macrolaba, H. opuntia and H. tuna respectively. In terms of sugar content using Brix refractometer, the top five non-edible macroalgae species after pre-acid treatment were as follows: Liagora sp., Galaxaura oblongata, Sargassum crasssifolium with 3°Br; and Turbinaria oranata together with Padina japonica with 2°Br. The used of 30g/0.1kg dry weight sample among the five selected non-edible macroalgae utilized in the fermentation process yielded sufficient ethanol of 2.99 percent to 4.17 percent. Statistically, regardless of the non-edible macroalgae and microbial fermenter used in the study, there was no significant difference in their ethanol production. However, Liagora sp. showed the highest percentage ethanol production and the yeast microorganism Candida tropicalis was the best fermenter. Bioethanol from non-edible macroalgae such as the species of Liagora sp, G. Oblongata, S. crassifolium, T. oranata and P. japonica which were available.

VIEWS 29

Baleta FN, Nalleb JP, 2016. Species composition, abundance and diversity of seaweeds along the intertidal zone of Nangaramoan, San Vicente, Sta. Ana, Cagayan, Philippines. Aquaculture, Aquarium, Conservation & Legislation 9(2), pp.250-259.

Beck F, Martinot E. 2016. Renewable energy policies and barriers.

Chen H, Zhou D, Luo G, Zhang S, Chen J. 2015. Macroalgae for biofuels production: Progress and perspectives. Renewable and Sustainable Energy Reviews 47, pp.427-437.

Chen J, Bai J, Li H, Chang C, Fang S. 2015. Prospects for bioethanol production from macroalgae. Trends in Renewable Energy 1(3), pp.185-197.

Chow TJ, Su HY, Tsai TY, Chou HH, Lee TM, Chang JS. 2015. Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Bioresource technology 184, pp.33-41.

Clemente KJE, Baldia SF, Cordero Jr PA. 2017. The marine macroalgal flora of the Romblon Island Group (RIG), Central Philippines. Aquaculture, Aquarium, Conservation & Legislation 10(5), pp.983-1000.

Devlies B. 2017. Ethanol as Mitigation Measure in the Transport Sector: Countervailing Perverse Effects of Uncoordinated Biofuel Standards in the US and Brazil. Energy LJ 38, p.213.

Elander RT, Putsche VL. 2018. Ethanol from corn: technology and economics. In Handbook on Bioethanol (pp. 329-349). Routledge.

Evangelista EV, Cordero Jr, PA, Evangelista LT, Liao LM. 2015. Macrobenthic Algae of the Southern Coasts of Catanduanes Island, Philippines: Historical Account and Critical Review of Records.

Galvez M. 2010. Seaweed-based biofuel farm to rise in Aurora. The Philippine Star, Available at: http://www.philstar.com/Article.aspx?articleid=573469

Gatdula DL. 2010. DOE still undecided on ethanol import control. The Philippine Star; Available at: http://www.philstar.com/Article.aspx?articleid=584882

Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M. 2016. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews 54, pp.473-481.

Hamouda RA, Hussein MH, El-Naggar NEA. 2015. Potential value of red and brown seaweed for sustainable bioethanol production. Bangladesh Journal of Botany 44(4), pp.565-570.

John RP, Anisha GS, Nampoothiri KM, Pandey A. 2010. Micro and macroalgal 254 biomass: A renewable source for bioethanol. Bioresource Technology; DOI: 10.1016/j.biortech.2010.06.139

Khalil HPS, Lai TK, Tye YY, Rizal S, Chong EWN, Yap SW, Hamzah AA, Fazita MR, Paridah MT. 2018. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polymer Letters 12(4).

Kim JK, Yarish C, Hwang EK, Park M, Kim Y, Kim JK, Yarish C, Hwang EK, Park M, Kim Y. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32(1), pp.1-13.

Le Bouthillier Y, Cowie A, Martin P, McLeod-Kilmurray H. 2016. The law and policy of biofuels. Edward Elgar Publishing.

Mahadevan K. 2015. Seaweeds: a sustainable food source. In Seaweed sustainability (pp. 347-364). Academic Press.

Manufacture IV, King AH. 2019. Brown Seaweed Extracts (Alginates). Food Hydrocolloids 2, p.115.

Masirag CA. 2012. Macroalgae Diversity, Utilization and Phytochemical Screening. Unpublished Dissertation Paper. Cagayan State University Graduate School, Tuguegarao City.

Muktham R, Bhargava SK, Bankupalli S, Ball AS. 2016. A review on 1st and 2nd generation bioethanol production-recent progress. Journal of Sustainable Bioenergy Systems 6(3), pp.72-92.

Özçimen D, İnan B, Biernat K. 2015. An overview of bioethanol production from algae. In Biofuels—Status and Perspective. InTech.

Poquiz J. 2010. Ethanol producers buck biofuels law amendment. Malaya Business Insight; Available at: http://www.malaya.com.ph/07052010/busi4.html.

Ra CH, Kim SK. 2015. Bioethanol Production from Macroalgae and Microbes. Marine Bioenergy, p. 257.

Salosso Y, Jasmanindar Y. 2018. Diversity of brown macroalgae in Kupang Bay waters and alginate content potential and its phytochemistry. Aquaculture, Aquarium, Conservation & Legislation 11(3), pp.598-605.

Schiener P, Black KD, Stanley MS, Green DH. 2015. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Journal of Applied Phycology 27(1), pp.363-373.

Sudhakar K, Mamat R, Samykano M, Azmi WH, Ishak WFW, Yusaf T. 2018. An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews 91, pp.165-179.

Sulfahri, Amin M, Sumitro SB, Saptasari M. 2016. Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels 7(6), pp.621-626.

Tahil AA, Liao LM. 2019. Caulerpa falcifolia Harvey and Bailey (Chlorophyta) from Sibutu Island, Tawi-Tawi, a new record for the marine algal flora of the Philippines. Tropical Natural History 19(1), pp.1-7.

Trono GC, Largo DB. 2019. The seaweed resources of the Philippines. Botanica Marina 62(5), pp.483-498.

Trono GC. 2004. Field Guide and Atlas of the Seaweed Resources of the Philippines, Bureau of Agricultural Research, Department of Agriculture. Diliman, Quezon City.

Vieira C, Camacho O, Sun Z, Fredericq S, Leliaert F, Payri C, De Clerck O. 2017. Historical biogeography of the highly diverse brown seaweed Lobophora (Dictyotales, Phaeophyceae). Molecular phylogenetics and evolution 110, pp.81-92.

Wi SG, Kim HJ, Mahadevan SA, Yang D, Bae H. 2009. The Potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresource Technology 100, 6658-6660.