Biomass and carbon allocation within the Atlantic humid rainforest of southern Cameroon: Useful information for the implementation of REDD+ in Congo basin countries

Paper Details

Research Paper 06/04/2024
Views (380) Download (29)
current_issue_feature_image
publication_file

Biomass and carbon allocation within the Atlantic humid rainforest of southern Cameroon: Useful information for the implementation of REDD+ in Congo basin countries

JR. Ngueguim, EN. Ntabe, MC. Momo Solefack, JL. Betti
J. Bio. Env. Sci.24( 4), 16-29, April 2024.
Certificate: JBES 2024 [Generate Certificate]

Abstract

This study is an evaluation of carbon pools in the southern forest of Cameroon. It provides useful information for the implementation of REDD+, which requires reliable forest carbon data and monitoring systems to reduce forest loss. Data on diameter measurements and wood density for trees above 10 cm Dbh was collected within 65 randomly distributed plots across three sites with varying degrees of disturbance severity. A total of 200 subplots were set-up to estimate stem biomass and 100 quadrats to collect litter and soil corer for the estimation of root biomass. Results showed an estimated wood density of 0.63 ± 0.15 g.cm-3. High biomass and carbon values were observed in Campo (1170.63t/ha, 585.315tC/ha), as compared to Bidou (751.89 t/ha, 375.95 tC/ha) and Mangombe (571.34t/ha, 285.67tC/ha). There was a high biomass allocation ranging between 94.98% and 97.97% for standing trees. Conversely a low contribution of less than 7% was observed for small diameter trees (Dbh<20 cm), followed by fine roots (1.62 – 3.82%) and litter (0.34 – 0.94%). Variation in biomass can be explained by the level of disturbance, heterogeneity in the spatial distribution of forest types, absence of standardized sampling rate and allometric equations for the Congo basin forest. Due to the complexities involved in forest biomass inventories and the low contribution of small diameter trees to the total biomass, the study suggests that trees with Dbh < 20 cm can be neglected.

VIEWS 64

Brown S, Lugo AE. 1984. Biomass of tropical forests, a new estimate based on forest volumes. Science 223, 1290–1293.

Brown S, Gillespie AJR, Lugo AE. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 35, 881–902.

Brown S, Lugo AE. 1992. Aboveground biomass estimates for tropical moist forest of the Brazilian Amazon. Interciencia 17, 8 – 18.

Brown S. 1997. Estimating biomass and biomass change of tropical forests. UN-FAO Forestry paper, Rome, Italy, 134p.

Castellanos J, Jaramillo VJ, Sanford RL, Kauffman JB. 2001. Slash-and-burn effects on fine root biomass and productivity in a tropical dry forest ecosystem in Mexico. Forest Ecology and Management 148, 41-50.

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99.

Chave J, Jean O, Bongers F, Châtelet P, Forget PM, Van Der Meer P, Riéra B, Dominique PC. 2008. Aboveground biomass cycling in a rain forest of Eastern South America. Biomass change, 20p.

Chave J, Riera B, Dubois MA. 2001. Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology 17, 79-96.

Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP. 2003. Spatial and temporal variation in biomass of a tropical forest: Results from a large census plot in Panama. Journal of Ecology 91, 240–252.

Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philos Trans Royal Soc B 359, 409–420.

Chave J, Andalo C, Brown S, Cairns AM, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99.

Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, NI J, Holland EA. 2001. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384.

Djomo AN, Ibrahima A, Saborowskic J, Gravenhorsta G. 2010. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management 260, 1873–1885.

Djuikouo MNK, Doucet JL, Nguembou CK, Lewis S, Sonke B. 2010. Diversity and aboveground biomass in three tropical forest types in the Dja Biosphere Reserve, Cameroon. Afr. J. Ecol. 48,1053–1063.

Duveiller G, Defourny P, Desclee B, Mayaux P. 2008. Deforestation in Central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically – distributed Landsat extracts. Remote Sensing of Environment 112(5), 1969-1981.

Djomo AN, Adamou I, Saborowski J, Gravenhorst G. 2010. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For. Ecol. Manage. 260, 1873-1885.

Djomo AN, Knohl A, Gravenhorst G. 2011. Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. For. Ecol. Manage. 261(8), 1448-1459

FAO. 2006. Inventaire forestier national du Cameroun. Rapport, Yaoundé, Cameroun, 128p.

FAO. 2007. State of the World’s Forests 2007. FAO, Rome, pp 144.

Sishir Gautam, Stephan A, Pietsch. 2012. Carbon pools of an intact forest in Gabon. Afr. J. Ecol. 50, 414–427.

FAO-UNDP. 1972. Investigacion sobre el fomento de la produccion de los bosques del nordeste de Nicaragua: inventario forestal de bosques latifoliados. FAO, informe technico 2, Rome, Italie.

Fortier J, Truax B, Gagnon D, Lambert F. 2011. Distribution de la biomasse racinaire et des stocks de carbone du sol dans différents systèmes riverains. Cultivons l’avenir 2, initiative federale – provinciale-territoriale. Canada, Quebec.

Gerard J, Guibal D, Beauchene J, Fouquet D, Langbour P, Thevenon MF, Thibaut A, Vernay M. 2009. Technogical Characteristics of 245 species. Tropix 6. 0 Update March 2009. CIRAD.

Graefe S, Hertel D, Leuschner C. 2008. Estimating Fine Root Turnover in Tropical Forests along an Elevational Transect using Minirhizotrons. Biotropica 40, 536-542.

Grier CC, Vogt KA, Keyes ML, Edmonds RL. 1981. Biomass distribution and above and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington cascades. Canadian Journal of Forest Research 11, 155-167.

Grubb PJ, Edwards PJ. 1982. Studies of mineral cycling in a montane rain forest in New Guinea III. The distribution of mineral elements in the above ground material. Journal of Ecology 70, 623-648.

Houghton RA, Lawrence KL, Hackler JL, Brown S. 2001. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Change Biol 7, 731-746.

Ibrahima A, Schmidt P, Ketner P, Mohren GJM. 2002. Phytomasse et cycle des nutriments dans la forêt tropicale dense humide du Sud Cameroun. Tropenbos-Cameroon Documents 9. The Tropenbos Cameroon Programme.

Jordan CF. 1985. Nutrient cycling in tropical forest ecosystems. Wiley and sons, Chichester, Royaume Uni.

Klinge H, Rodrigues WA, Bruning E, Fittkau J. 1975. Biomass structure in a central Amazonian rain forest. In Golley, F.B., Medina, E. (Eds). Trop. Ecol. Syst. Springer Verlag, New York, USA.

Klinge H. 1976. Bilanzierung von Hauptnährstoffen im oekosystem tropischer regenwalder (Manaus)- Vorlaufige daten. Biogeographica 7, 59-77.

Laporte N, Merry F, Cattaneo A, Baccini A, Goetz S, Houghton R, Johns T. 2008. Les fondations de la REDD en République démocratique du Congo (RDC). The Woods Hole Research Centre, 16p.

Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 8, 219-230.

Letouzey R. 1957. La forêt à Lophira alata de la zone littorale camerounaise. Bois et Forêts des Tropiques. 53, 9-20.

Lescure JP, Puig H, Riera B, Leclerc D, Beekmari A, Beneteau A. 1983. La phytomasse épigée d’une forêt dense en Guyanne française. Oecol. Gener. 4(3), 237-251.

Medina E, Cuevas E. 1989. Patterns of nutrients accumulation and release in Amazonian forests of the upper Rio Negro basin. In, J. (ed). Mineral nutrients in tropical forest and savanna ecosystems. Blackwell scientific publications, Oxford, Royaume uni.

Mugnier A, Cassagne AB, Bayo N, Lafon C. 2009. Estimation des stocks de carbone des forêts du Bassin du Congo pour le REDD : étude comparative conduite sur 22 types forestiers, 4 pays et un dispositif d’aménagement 4,8 millions d’ha. Buenos Aires, Argentina, 18–23 October 2009. XIII World Forestry Congress. 11p.

Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.

Nelson BW, Mesquita R, Pereira JLG, De Souza SGA, Batista GT, Couto LB. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology Management 117, 149–167.

Noij IGAM, Janssen BH, Wesselink LG, Van Grinsven JJM. 1993. Modelling nutrients and moisture cycling in tropical forests. Tropenbos series 4, The Tropenbos Foundation, Wageningen, Pays Bas.

Ntabe EN, Akande JA, Kehinde LA. 2012. Goodness-of-Fit Test for Volume Equations of Three Timber Species in South East Cameroon. Journal of Environmental Science and Engineering B 1, 600-605.

Nykvist N. 1998. Do logs from tropical rain forests contain more plant nutrients than log from temperate forests: a literature review. Journal of Sustainable Forestry 7, 1-19.

Pignard G, Dupouey JL, Arrouays D, Loustau D. 2000. Carbon stocks estimates for French forests. Biotechnol. Agron. Soc. Environ 4(4), 285–289.

Picard N. 2007. Dispositifs permanents pour le suivi des forêts en Afrique Centrale :Un état des lieux. CIRAD.

Poels RLH. 1987. Soils, water and nutrients in a forest ecosystem in Surinam. PhD Thesis, Agricultural University Wageningen, Pays Bas.

Quirine MK, Coe R, Van Noordwijk M, Ambagau Y, Palm AC. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Management 146, 199-209.

Ramankutty N, Gibbs H, Achard F, Defries J, Foley JA, Houghton RA. 2007. Challenges to estimating carbon emissions from tropical deforestation. Glob. Change Biol. 13, 51–66.

Rees TI. 1963. Report to government of British Guyana on forest inventory. Extended programme of technical assistance. FAO, Rome, Italie.

Rosado BHP, Martins AC, Colomeu TC, Oliveira RS, Joly CA, Aidar MPM. 2011. Fine root biomass and root length density in a lowland and a montane tropical rain forest, SP, Brazil. Biota Neotrop. 11(3), 203 – 209.

Russel CH. 1983. Nutrient cycling and productivity of native and plantation forests at Jari florestal, para Brasil, PhD Thesis. University of Goergia, Athens, Etats Unis.

Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. www.pnas.org/cgi/doi/10.1073/ pnas.1019576108

Sonwa D. 2004. Biomass management and diversification within cocoa agroforests in the humid forest zone of soutern Cameroon. PhD Thesis. Institut fur Gartenbauwissenschaft der Rheinischen Friedrich-Wilhelms-Universitat Bon n. 112p.

Tchouto MPG. 2004. Plant diversity in a Central African rainforest: implications for biodiversity conservation in Cameroon. PhD thesis, department of plant sciences, Wageningen University, the Netherlands. 206p.

Yavitt JB, Wright SJ. 2001. Drought and Irrigation Effects on Fine Root Dynamics in a Tropical Moist Forest, Panama. Biotropica 33, 421-434.

Ziter C, Bennett EM, Gonzalez A. 2013. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4(7), 85.

Zobel RW, Kinraide TB, Baligar VC. 2007. Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil 297, 243-254.