Biopolymer- Ceramics Nanocomposites for Humidity Sensors: A Review

Paper Details

Review Paper 01/05/2019
Views (425) Download (27)
current_issue_feature_image
publication_file

Biopolymer- Ceramics Nanocomposites for Humidity Sensors: A Review

Hind Ahmed, Ahmed Hashim, Hayder M. Abduljalil
Int. J. Biosci.14( 5), 276-281, May 2019.
Certificate: IJB 2019 [Generate Certificate]

Abstract

The nanocomposites have many applications such as humidity sensors, solar cells, antibacterial,….etc. In this review, polymer- ceramics nanocomposites have been studied for humidity sensors with high sensitivity and low cost. The polyvinyl alcohol, oxides nanoparticles, carbide nanoparticles and other nanocomposites have been reviewed for humidity sensors.

VIEWS 32

Agool IR, Kadhim KJ, Hashim A. 2017. Synthesis of (PVA-PEG-PVP-ZrO2) Nanocomposites For Energy Release and Gamma Shielding Applications. International Journal of Plastics Technology 21(2). https://doi.org/10.1007/s12588-017-9196-1.

Agool IR, Kadhim KJ, Hashim A. 2017. Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. International Journal of Plastics Technology 21(2). https://doi.org/10.1007/s12588-017-9192-5.

Ahmed H, Abduljalil HM, Hashim A. 2019. Analysis of Structural, Optical and Electronic Properties of Polymeric Nanocomposites/Silicon Carbide for Humidity Sensors. Transactions on Electrical and Electronic Materials, https://doi.org/10.1007/s42341-019-00100-2

Ahmed H, Hashim A, Abduljalil H. 2019. Analysis of Structural, Electrical and Electronic Properties of (Polymer Nanocomposites/ Silicon Carbide) For Antibacterial Application. Egyptian Journal of Chemistry. https://doi.org/10.21608/EJCHEM.2019.6241.1522.

Al-Nasrawy DK, Abdulmajeed IM, Noori FT, Abaid AH, Thajeel KM. 2011. The effect of SiC–particles– reinforced MgO composites. Journal of Kufa-physics 3(1).

Farahani H, Wagiran R, Hamidon MN. 2014. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5).

Fei T, Jiang K, Liu S, Zhang T. 2014. Humidity sensor based on a cross-linked porous polymer with unexpectedly good properties. Rsc Advances 4(41).

Hadi A, Hashim A. 2017. Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukrainian Journal of Physics 62(12). https://doi.org/10.15407/ujpe62.12.1044.

Ham D, Lee J. 2009. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4).

Hamad Z S, Hashim A. 2018. Biopolymer blend or titanium nitride nanoparticles: synthesis and pressure sensor characterization for environmental application. Journal of Biodiversity and Environmental Sciences 13(6).

Hashim A, Hadi A. 2017. Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukrainian Journal of Physics 62(11), https://doi.org/10.15407/ujpe62.11.0978.

Hashim A, Hadi A. 2018.  Novel Pressure Sensors Made From Nanocomposites (Biodegradable Polymers–Metal Oxide Nanoparticles): Fabrication and Characterization. Ukrainian Journal of Physics 63(8). https://doi.org/10.15407/ujpe63.8.754

Hashim A, Hadi A. 2017. Synthesis and Characterization of (MgO–Y2O3–CuO) Nanocomposites for Novel Humidity Sensor Application. Sensor Letters 15(10).

Hashim A, Hadi A. 2017. Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukrainian Journal of Physics 62(12). https://doi.org/10.15407/ujpe62.12.1050.

Hashim A, Hadi Q. 2018. Structural, electrical and optical properties of (biopolymer blend/ titanium carbide) nanocomposites for low cost humidity sensors. Journal of Materials Science: Materials in Electronics 29, 11598–11604, https://doi.org/10.1007/s10854-018-9257-z

Hashim A, Hadi Q. 2018. Synthesis of Novel (Polymer Blend-Ceramics) Nanocomposites: Structural, Optical and Electrical Properties for Humidity Sensors. Journal of Inorganic and Organometallic Polymers and Materials 28(4). https://doi.org/10.1007/s10904-018-0837-4.

Hashim A, Agool IR, Kadhim KJ. 2018. Novel of (Polymer Blend-Fe3O4) Magnetic Nanocomposites: Preparation and Characterization For Thermal Energy Storage and Release,  Gamma Ray Shielding, Antibacterial Activity and Humidity Sensors Applications. Journal of Materials Science: Materials in Electronics  29(12). https://doi.org/10.1007/s10854-018-9095-z

Hashim A, Hamad ZS. 2018. Low cost and flexible biopolymers (polyvinyl alcohol-poly-acrylic acid)/niobium carbide new nanocomposites for sensors. Journal of Biodiversity and Environmental Sciences 13(6).

Jang JH, Han JI. 2017. Cylindrical relative humidity sensor based on poly-vinyl alcohol (PVA) for wearable computing devices with enhanced sensitivity. Sensors and Actuators A: Physical 261, 268-273.‏

Kadhim KJ, Agool IR, Hashim A. 2016. Synthesis of (PVA-PEG-PVP-TiO2) Nanocomposites for Antibacterial Application. Materials Focus 5(5), https://doi.org/10.1166/mat.2016.1371

Kadhim KJ, Agool IR, Hashim AA. 2017. Effect of Zirconium Oxide Nanoparticles on Dielectric Properties of (PVA-PEG-PVP) Blend for Medical Application. Journal of Advanced Physics 6(2). https://doi.org/10.1166/jap.2017.1313.

Karthick S, Lee HS, Kwon SJ, Natarajan R, Saraswathy V. 2016. Standardization, calibration, and evaluation of tantalum-nano rGO-SnO2 composite as a possible candidate material in humidity sensors. Sensors 16(12).

Karthikeyan K, Poornaprakash N, Selvakumar N, Jeyasubrmanian K. 2009. Thermal properties and morphology of MgO-PVA nanocomposite film. J Nanostruct Polym. Nanocompos 5(4), 83-88.‏

Kong D, Le L T, Li Y, Zunino JL, Lee W. 2012. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28(37), 13467-13472.‏

Li T, Li L, Sun H, Xu Y, Wang X, Luo H & Zhang T. 2017. Porous ionic membrane based flexible humidity sensor   and its multifunctional applications. Advanced Science 4(5).

Rashid F L, Hadi A, Al-Garah N H, Hashim A. 2018. Novel Phase Change Materials, MgO Nanoparticles, and Water Based Nanofluids for Thermal Energy Storage and Biomedical Applications. International Journal of Pharmaceutical and Phytopharmacological Research 8(1).

Sawai J, Yoshikawa T. 2004. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. Journal of applied microbiology 96(4), 803-809.‏

Sharma SK, Prakash J, Sudarshan K, Sen D, Mazumder S, Pujari PK. 2015. Structure at Interphase of Poly (vinyl alcohol)–SiC Nanofiber Composite and Its Impact on Mechanical Properties: Positron Annihilation and Small-Angle X-ray Scattering Studies. Macromolecules 48(16).

Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes FG. 2014. Infrared thermography for temperature measurement and non-destructive testing. Sensors 14(7), 12305-12348.

Wang Y. 2013. Fabrication of Relative Humidity Sensors   based on Polyimide Nanoparticles (Doctoral dissertation, Applied Sciences: School of Engineering Science).‏

Yang T, Xie D, Li Z, Zhu H. 2017. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports 115, 1-37.‏

Yang Y, Zhou Y, Wu J M, Wang ZL. 2012. Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors. ACS nano 6(9).

Zainelabdin A, Amin G, Zaman S, Nur O, Lu J, Hultman L, Willander M. 2012. CuO/ ZnO nanocorals synthesis via hydrothermal technique: growth mechanism and their application as humidity sensor. Journal of Materials Chemistry 22(23), 11583-11590.

Zhao X, Long Y, Yang T, Li J, Zhu H. 2017. Simultaneous High Sensitivity Sensing of Temperature and Humidity with Graphene Woven Fabrics. ACS applied materials & interfaces 9(35), 30171-30176.‏