Callus growth and plant regeneration in durum wheat (Triticum durum Desf.) immature embryos under abscisic acid (ABA) treatment

Paper Details

Research Paper 01/02/2013
Views (373) Download (8)
current_issue_feature_image
publication_file

Callus growth and plant regeneration in durum wheat (Triticum durum Desf.) immature embryos under abscisic acid (ABA) treatment

El Houssine Bouiamrine, Mohamed Diouri, Rachid EL Halimi, Lahcen Chillasse
Int. J. Biosci.3( 2), 87-98, February 2013.
Certificate: IJB 2013 [Generate Certificate]

Abstract

The effect of abscisic acid (ABA) on callus growth and plant regeneration was studied in Four cultivars of durum wheat considered to have a good ability for in vitro culture. calluses induced from immature embryos on MS medium supplemented with 2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) were transferred onto the same medium supplemented with different concentrations of ABA (0, 1, 2, 4 and 10 µM). The regeneration medium used was MS medium supplemented with 0.2 mg L-1 of 2,4-D, 10μM of benzylaminopurine (BAP) and 5μM of naphthaleneacetic acid (NAA). callus growth decreased with increasing concentration of ABA in the medium. Best regeneration rates were obtained from calli that were grown on media containing a low concentration of ABA (1 µM).The best number of plantlets per regenerating callus was also obtained from cultures on media containing 1μM ABA. Among the regenerated plants, some rare albino plants were obtained from calluses of Karim and Anouar varieties.

VIEWS 10

Abou-mandour AA, Hartung W. 1986. The effect of abscisic acid and increased osmotic potential of the media on growth and root regeneration of Zea mays callus. Journal of Plant Physiology 122(2), 139-145, http://dx.doi.org/10.1016/S0176-1617(86)80054-2

Bennici A, Caffaro L, Dameri RM, Gastaldo P, Profumo P. 1988. Callus formation and plantlet regeneration from immature Triticum durum. Euphytica 39(3), 255-263, http://dx.doi.org/10.1007/BF00037104

Benkirane H, Sabounji K, Chlyah A, Chlyah H. 2000. Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell, Tissue and Organ Culture 61, 2107-113.

Bouiamrine EH, Mzouri K, Amssa M. 1999. Effet du génotype et du milieu de culture dans la culture d’embryons immatures de blé dur (Triticum durum Desf.) et de blé tendre (Triticum aestivum L.). In: Aupelf-Uref ed.. Actualités Scientifiques, Biotechnologies, amélioration des plantes et Sécurité alimentaire. Estem, Paris, 533-534. (In French).

Bouiamrine EH, Diouri M, El-Halimi R. 2012a. Somatic embryogenesis and plant regeneration capacity from mature and immature durum wheat embryos. International Journal of Biosciences 9(2), 29-39.

Bouiamrine EH, Diouri M, El-Halimi R. 2012b. Assessment of somaclonal variation in regenerated plants from immature embryos culture of durum wheat. International Journal of Agriculture and Biology 14, 941-946.

Brown FC, Brooks FJ, Pearson D, Mathias RJ. 1989. Control of embryogenesis and organogenesis in immature wheat embryo callus using increased medium osmolarity and abscisic acid. Journal of Plant Physiology 133(3), 727-733, http://dx.doi.org/10.1016/S0176-1617(89)80080-X

Carman JG, Jefferson NE, Campbell WF. 1987. Induction of embryogenic Triticum aestivum L. calli. II. Quantification of organic addenda and other culture variable effects. Plant Cell Tissue and Organ Culture 10(2), 115-128, http://dx.doi.org/10.1007/BF00035909

Creelman RA, Mason HS, Bensen RJ, Boyer JS, Mullet JE. 1990. Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Plant Physiology 92, 205-214.

Fazelienasab B, Omidi M, Amiritokaldani M. 2012. Callus induction and plant regeneration of wheat mature embryos under Abscisic Acid treatment. International Journal of Agriculture and Crops Sciences 4 (1), 17-23.

Finkelstein RR, Tenbarge KM, Shumway JE, Crouch ML. 1985. Role of ABA in maturation of rapeseed embryos. Plant Physiology 78, 630-636.

Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA. 1996. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cellular and Developmental Biology-Plant 32, 272-289, http://dx.doi.org/10.1007/BF02822700

Gawronska H, Burza W, Bolesta E, Malepszy S. 2000. Zygotic and somatic embryos of cucumber (Cucumis sativus L.) substantially differ in their levels of abscisic acid. Plant Science 157, 129-137, http://dx.doi.org/10.1016/S0168-9452(00)00277-6

George EF, Hall MA, De Klerk GJ. 2008. Plant Propagation by Tissue Culture, Vol. 1, Third Edition, Springer, Dordrecht, Netherlands, 501.

Hess JR, Carman JG. 1998. Embryogenic competence of immature wheat embryos: genotype, donor plant environment, and endogenous hormone levels. Crop Science 38, 249-253.

Ghaemi, M, Sarrafi A. 1994. The effect of the ‘D’ genome from synthetic wheat lines in anther culture response. Plant Breeding 112(1), 76-79, http://dx.doi.org/10.1111/j.1439-0523.1994.tb01279.x

Jiménez VM. 2005. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation. 47, 91-110.

Kiyosue T, Yamaguchi-Shin K, Shinozaki K, Kamada H, Harada H. 1993. cDNA cloning of ECP40, embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Molecular Biology 21, 1053-1068.

Kumari M, Patade VY, Arif M, Ahmed Z. 2010. Effect of iba on seed germination, sprouting and rooting in cuttings for mass propagation of Jatropha Curcus L strain DARL-2. INSInet Publication. Research Journal of Agriculture and Biological Sciences. 6(6), 691-696.

Li B, Wolyn DJ. 1996. Abscisic acid and ancymidol promote conversion of somatic embryos to plantlets and secondary embryogenesis in Asparagus officinalis L. In Vitro Cellular & Developmental Biology – Plant. 32 (4), 223-226, http://dx.doi.org/10.1007/BF02822691

Liu HJ, Misso SH, Kamijima O, Sawano M. 1990. Effects of plant growth regulators on the response of immature wheat embryo culture. Plant Tissue Culture Letters 7,170-176.

Lu DB. 1988. Charactenzation of abscisic acid-induced heat and drought tolerant wheat plants selected from tissue culture. Ph.D dissertation, Kansas State, USA, 80.

Maddock SE, Lancaster VA, Risiott R, Franklin J. 1983. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum L.). Journal of Experimental Botany 34, 915-926.

Morris PC, Kumar A, Bowles DJ. 1990. Osmotic stress and abscisic acid induce expression of the of the wheat Em genes. European Journal of Biochemistry 190, 625-630.

Morris PC, Maddock SE, Jones MGK, Bowles DJ. 1986. Lectin levels in tissues of cultured immature wheat embryos, Plant Cell Report 5, 460-463.

Morris PC, Weiler EW, Maddock SE, Jones MGK, Lenton JR, Bowles DJ. 1988. Determination of endogenous abscisic acid levels in immature cereal embryos during in vitro culture. Planta 173(1), 110-116, http://dx.doi.org/10.1007/BF00394495

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.

Mzouri K, Amssa M, Bouiamrine EH. 2001. Somatic embryogenesis from immature embryos of wheat cultivars (Triticum aestivum L.): genotype effect. Acta Botanica Gallica 148(3), 215-225.

Mzouri K, Amssa M. 2002. Amélioration de l’embryogenèse somatique à partir d’embryons immatures chez le Blé tendre (Triticum aestivum L.). II: Effet des régulateurs de croissance sur la callogenèse. Acta Botanica Gallica 149(4), 357-368. (In French).

Ozias-Akins P, Vasil IK 1982. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): evidence for somatic embryogenesis. Protoplasma 110, 95-105.

Pospisilova J, Synkova H, Haisel D, Semoradova S. 2007. Acclimation of plantlets to ex vitro condition: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Horticulturae 748, 29-38.

Qureshi JA, Kartha KK, Abrams SR, Steinhauer L. 1989. Modulation of somatic embryogenesis in early and late-stage embryos of wheat (Triticum aestivum L.) under the influence of (plus orminus) abscisic acid and its analogs. Plant Cell Tissue and Organ Culture 18, 55 – 69.

Rai MK, Shekhawat NS, Harish, Gupta AK, Phulwaria M, Ram K, Jaiswal U. 2011. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue and Organ Culture 106, 179-190.

R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Redway FA, Vasil V, Lu D, Vasil IK. 1990. Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.). Theoretical and Applied Genetics 79(5), 609-617, http://dx.doi.org/10.1007/BF00226873

Ren J, Wang X, Yın J. 2010. Dicamba and Sugar Effects on Callus Induction and Plant Regeneration from Mature Embryo Culture of Wheat. Agricultural Sciences in China 9 (1), 31-37, http://dx.doi.org/10.1016/S1671-2927(09)60064-X

Sapina NF, Karasev GS, Trunova TI. 1994. Abscisic acid as an inducer of freezing tolerance in wheat cell suspension cultures. Russian Journal of Plant Physiology 41, 546-551.

Satyavathi VV, Jauhar PP, Elias EM, Rao MB. 2004. Effects of Growth Regulators on In Vitro Plant Regeneration in Durum Wheat. Crop Science 44, 1839–1846.

Steel RGD, Torrie JH, Dickey DA. 1997. Principles and procedures of statistics – a biometrical approach (3rd edition). McGraw Hill Book Co. Inc., New York, USA, 400-428.

Tamás C, Szucs P, Rakszegi M, Tamás L, Bedo Z. 2004. Effect of combined changes in culture medium and incubation conditions of the regeneration from immature embryos of elite varieties of winter wheat. Plant Cell Tissue and Organ Culture 79, 39-44.

Vendruscolo ECG, Schuster I, Negra ES, Scapim CA. 2008. Callus induction and plant regeneration by Brazilian new elite wheat genotypes. Crop Breeding and Applied Biotechnology 8, 195-201.

Wurtele ES, Wang H, Durgerian S, Nikolau BJ, Ulrich TH. 1993. Characterization of a gene that is expressed early in somatic embryogenesis of Daucus carota. Plant Physiology 102, 303–12.