Callus Induction on Sesame (Sesamum indicum L.) by 1-Naphthalene acetic acid and 2,4-Dichlorophenoxy acetic acid Hormones

Paper Details

Research Paper 01/03/2014
Views (547)
current_issue_feature_image
publication_file

Callus Induction on Sesame (Sesamum indicum L.) by 1-Naphthalene acetic acid and 2,4-Dichlorophenoxy acetic acid Hormones

Sina Ghanbari, Seyed Kamal Kazemitabar, Hamid Najafi Zarini
J. Biodiv. & Environ. Sci. 4(3), 275-278, March 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Sesamum indicum L. belongs to family pedaliaceae that these family, including 60 species. Sesame is the most important oil-seed crop of semi-arid tropics and a source of high quality cooking oil and protein. In recent years, plant tissue culture techniques has become a powerful tool for the propagation of many plant species. In this research weight and diameter of callus were analyzed to determination of appropriate medium culture. This study were performed on fall of 2013 in complete randomized design with three replicated. The MS medium culture was contain NAA and 2,4-D hormones. ANOVA statistical analysis showed significant difference at 1% level. Highest callus diameter belong to medium contain 0.2 mg/l 2,4-D and 0.12 mg/l NAA, also maximum callus weight belong to 0.2 mg/l 2,4-D and 0.16 mg/l NAA. Therefore, hormones amount which used in this research can induced callus in sesame.

Ammirato PV and Embryogenesis. 1983. Techniques for propagation and breeding. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y. (eds) Handbook of Plant Cell Culture I, 82-123. New York.

Brar GS, Ahuja L and Sesme. 1979. Its culture, genetics, breeding and biochemistry. Annual Review of Plant Science 1, 245-313.

Baskaran P and Jayabala N. 2006. In vitro mass propagation and diverse callus orientation on Sesamum indicum L. an important oil plant. Agriculture Technoloy 2, 259-269.

Chattopadhyaya B, Banerjee J, Basu A, Sen SK and Mrinalmaiti K. 2010. Shoot induction and regeneration using internodal transverse thin cell layer culture in Sesamum indicum L., Plant Biotechnology Reports 4, 173-178.

Evans DA, Sharp WR, PV Ammirato and Yamada Y. 1983. Handbook of Plant Tissue Culture, Vol. 1. Techniques for Propagation and Breeding, Macmillan, New York.

FAOSTAT. 2008. http://faostat.fao.org.

Gangopadhyay G,  Poddare  R  and  Gupta  S. 1998. Micro propagation of sesame (Sesamum indicum L.) by in vitro multiple shoots production from nodal explants. Phytomorphology 48, 83-90.

George L, Bapat VA and Rao PS. 1987. In vitro multiplication of sesame (Sesamum indicum L.) Through tissue culture. Annals of Botany 60, 17-21.

Jeyamary R and Jayabalan N. 1997. Influence of growth regulators on somatic embryogenesis in sesame. Plant Cell Tissue Organ Culture 49, 67-70.

Kolte, SJ. 1985. Disease of annual edible oil seed crops. Rape seed mustard and sesame diseases. CRC, Boca Raton II.

Lee JJ, Park YH, Park YS and Kim BG. 1985. Propagation of sesame (S. indicum L.) through shoot tip culture. Korean Journal of Breeding 17, 367-372.

Murashige, T and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiology Plant 15, 473-497.

Namasivayam P. 2007. Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Culture 90, 1-8.

Rajenderrao K and Vaidyanath K. 2002. Biotechnology of Sesame-An oil seed crop. Plant Cell Biotechnology and Molecular Biology 3 (3&4), 101-110.

Seo H, Park T, Kim Y, Kim H and Yun S. 2007. High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. In Vitro Cell Development Plant Biology 43, 209-214.

Weiss, EA.  1971. Castor,  Sesame  and  Safflower. Leonard Hill, London, 311-525.

Xu ZQ, Jia JF and Hu ZD. 1997. Somatic embryogenesis in Sesamum indicum L. cv. Nigrum. Journal of Plant Physiology 150 (6), 755-758.

Zimmerman LJ. 1993. Somatic Embryogenesis: A model for early development in higher plants. The Plant Cell 5, 1411-142.

Related Articles

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.

Determinants of tree resource consumption around Mont Sangbé national park in western Côte d’Ivoire

Kouamé Christophe Koffi, Serge Cherry Piba, Kouakou Hilaire Bohoussou, Naomie Ouffoue, Alex Beda, J. Biodiv. & Environ. Sci. 27(1), 71-81, July 2025.