Carbohydrate source and concentration affect in vitro growth indices of the selected wild cherry (Prunus avium L.) genotype

Paper Details

Research Paper 01/08/2013
Views (362) Download (11)
current_issue_feature_image
publication_file

Carbohydrate source and concentration affect in vitro growth indices of the selected wild cherry (Prunus avium L.) genotype

Hassan Hajnajari, Tahereh Hasanloo
Int. J. Biosci.3( 8), 174-181, August 2013.
Certificate: IJB 2013 [Generate Certificate]

Abstract

In vitro shoots of the selected genotype of wild cherry grown in natural forests of Nour (north forests of Iran) were subcultured in Murashige and Skoog medium (1/2 N) containing 1 mgl-1 BA and 0.1 mgl-1 IBA and three different source of carbohydrates (Sucrose, Glucose and fructose) at three levels (0, 15, 30 and 45 g l-1 ) for proliferation stage. Mean height of longest shoot, Coefficient of multiplication, as the mean of new shoots formed per micro cutting in each subculture, mean of leaf number, dry weight, minerals percentage (N, P, K and Ca) and sucrose content were measured in shoots after 30 and 45 days. Fructose resulted as the best source of carbohydrate inducing superior rates of growth indices. Higher concentrations, more than 30 g l-1, of each carbohydrate improved the results. The highest sucrose content in shoots was achieved in media supplemented with 45 gl-1 sucrose and fructose after 15 and 30 days, respectively. The maximum uptake of N (%) was achieved in shoots treated by 45 g l-1 fructose both after 15 and 30 days. It was concluded that type of carbon source affected significantly growth indices, consequently the rate of mineral absorption and levels of carbohydrates of the in vitro shoots at different stages of growth.

VIEWS 26

Akita M, Negishi K, Kitano A, Iwasaki M, Komae R, Ohta Y, Kuriu T, Takii T. 2006. Mass propagation of cherry (Cerasus×yedoensis MATSUM.) through shoot primordia. Acta Horticulture 725, 579-584.

Baskaran P, Jayabalan N. 2005. Role of basal media, carbon sources and growth regulators in micropropagation of Eclipta alba a valuable medicinal herb. KMITL Science Journal 5, 469-482.

Bidarigh S, Azarpour E. 2011. Evaluation effect of temperature management on rooting in micro cutting of poinsettia. World Applied Science Journal 14, 654-657.

Bozena B, Szczerba J. 1991. Influence of different carbon sources on invertase activity and growth of sour cherry (Prunus cerasus L.) shoot cultures. Journal Experimental Botany 42, 911-915. http://dx.doi.org/10.1093/jxb/42.7.911

Brink RH, Dubar P, Lynch D L. 1960. Measurement of carbohydrates in soil hydrolysates with anthrone. Soil Science. 89, 157-166. http://dx.doi.org/10.1097/00010694-196003000-00006

Devaux C, Baldet P, Joubès J, Dieuaide-Noubhani M, Just D, Chevalier C, Raymond P. 2003. Physiological, biochemical and molecular analysis of sugar-starvation responses in tomato roots. Journal of Experimental Botany 54, 1143-1151. http://dx.doi.org/10.1093/jxb/erg113

Ďurkovič J. 2006. Rapid micropropagation of mature wild cherry. Biologia Plantarum.50, 733-736. http://dx.doi.org/10.1007/s10535-006-0118-x

Eapen S,. Georg L. 1990. Influence of phytohormones, carbohydrates, amino acids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet. Plant Cell Tissue Organ Culture. 22, 87- 93. http://dx.doi.org/10.1007/BF00043683

Emanuel E, Bloom AJ. 2005. Mineral nutrition of plants: principles and perspectives. 2nd edition, Academic Press. p. 147.

Fuentes G, Talavera C, Desjardins Y, Santamaría JM. 2007. Low exogenous sucrose improves ex vitro growth and photosynthesis in coconut in vitro plantlets if grown in vitro under high light. Acta Horticulture 748, 151-155.

Grant NJ, Hammatt N. 1999. Increased root and shoot production during micropropagation of cherry and apple rootstocks: effect of subculture frequency. Tree Physiology. 19, 899–903.

Hajnajari H, Hasanloo T, Asghary AH, Izadpanah M. 2009. Influence of different nitrogen sources on in vitro shoot’s growth characteristics of the selected genotype of wild cherry (Prunus avium L.). Seed and Plant. 24, 749-762.

Hammatt N, Grant NJ. 1996. Micropropagation of mature British wild cherry. Plant Cell Tissue Organ Culture 47, 103-110. http://dx.doi.org/10.1007/BF02318945

Harada H, Murai Y. 1996. Micropropagation of Prunus mume. Plant Cell Tissue Organ Culture. 46, 265-267. http://dx.doi.org/10.1007/BF02307104

Hasanloo T, Hajnajjari H, Fahimi H, Nasiri M. 2006. Evaluation of ionic equilibrium and propagation coefficient of jojoba (Simmondsia chinensis (LINK) SCH.) in vitro. Iranian Journal of Rangelands and forests plant breeding. 14, 105-113.

Ivanica J. 1992. Micropropagation of cherry in: Bajaj YPS (ed). Biotechnology in agriculture and forestry. 18. Spriger- Verlag.

Kunst A, Draeger B, Ziegenhorn J. 1984. Colorimetric methods with glucose oxydase and peroxydase. In: Bergmeyer HU., (ed). Methods of enzymatic analysis. 6, 178-185. Verlag chemie, weinheim.

Leifert C, Pryce S, Lumsden PJ, Woutes WM. 1992. Effect of medium acidity on growth and rooting of different plants growing in vitro. Plant Cell Tissue Organ Culture 30, 171- 179. http://dx.doi.org/10.1007/BF00040019

Madhulatha P, Kirubakaran SI, Sakthivel N. 2006. Effects of carbon sources and auxins on in vitro propagation of banana. Biologia Plantarum. 50, 782-784. http://dx.doi.org/10.1007/s10535-006-0131-0

Mclachland KD. 1976. Comparative phosphorus responsive plants to the changes of variable phosphorus situations. Australian Journal of Agriculture Research. 27, 323- 341.

Miller BD, Timmer VR. 1997. Nutrient dynamics and  carbon  partitioning  in  nutrient  loaded  Picea mariana [Mill.] B.S.P. Seedlings during Hardening. Scandinavian Journal of Forest Research. 12, 122-129. http://dx.doi.org/10.1080/02827589709355393

Nigra H..M, Alvarez MA, Giulietti AM. 1990. Effect of carbon and nitrogen sources on growth and solasodine production in batch suspension cultures of Solanum eleagnifolium cav. Plant Cell Tissue Organ Culture. 21, 55-60. http://dx.doi.org/10.1007/BF00034492

Pritchard J, Wyn-Jones RG, Tomos AD. 1991. Turgor, growth and rheological gradients in wheat roots following osmotic stress. Journal of Experimental Botany. 42, 1043-1049. http://dx.doi.org/10.1093/jxb/42.8.1043

Ružić DV, Vujović TI. 2008. The effects of cytokinin types and their concentration on in vitro multiplication  of  sweet  cherry  cv.  Lapins  (Prunus avium L.). Horticultural Science (Prague). 35, 12-21.

 Ružić D, Sarić M, Cerović R, Ćulafić L. 2000. Relationship between the concentration of macroelements, their  uptake  and  multiplication  of cherry rootstock Gisela 5 in vitro. Plant Cell Tissue Organ Culture. 63, 9-14. http://dx.doi.org/10.1023/A:1006412901992

Sabeti H 1995. Forests, trees and bushes of Iran. Tehran, Iran, Ministry of Information and Tourism Press. p. 418-9.

Schmidt H, Ketzel A. 1996. In vitro culture techniques in sweet cherry breeding. Acta Horticulturae. 410, 111-114

Dussert S, Verdeil JL, Rival A, Noirot M, Buffard-Morel J. 1995. Nutrient uptake and growth of in vitro coconut (Cocos nusifera L.) calluses. Plant Science. 106: 185- 93. http://dx.doi.org/10.1016/0168-9452(95)04079-A

Stromberger JA, Tsai GY. 1994. Interaction of potassium with nitrogen and their influence on growth and yield potential in maize. Plant Nutrition. 17, 19-37. http://dx.doi.org/10.1080/01904169409364707

Troyanos YE, Hpps NA, Moorby J, Ridout MS. 1997. The effects of external magnesium concentration on the growth and magnesium inflow rates of micropropagated cherry rootstocks F.12/1′ (Prunus avium L.) and `Colt’ (Prunus avium L.×Prunus pseudocerasus L.). Plant Soil. 197, 25-33. http://dx.doi.org/10.1023/A:1004264806741

Tuija Aronen, T, Pehkonen T, Ryynänen L. 2009. Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris, Scandinavian Journal of Forest Research. 24, 372-383. http://dx.doi.org/10.1080/02827580903228862 

Zilkah S, Faingersh E, Rotbaum A. 1992. In vitro propagation of three MXM (Prunus avium×Prunus Mahaleb) cherry rootstocks. Acta Horticulturae. 314, 93-98.