Welcome to International Network for Natural Sciences | INNSpub

Carrageenan and biochemical composition of three species of Halymenia (Halymenia durvillaea Bory de Saint-Vincent, Halymenia maculata J. Agardh and Halymenia dilatata Zanardini) in Initao, Misamis Oriental, Mindanao, Philippines

Research Paper | May 1, 2016

| Download 18

Florence B. Kho, Maria Luisa S. Orbita, Muhmin Michael E. Manting, Ronaldo R. Orbita

Key Words:

Int. J. Biosci.8( 5), 182-189, May 2016

DOI: http://dx.doi.org/10.12692/ijb/8.5.182-189


IJB 2016 [Generate Certificate]


Laboratory experiments were conducted to determine the biochemical composition and carrageenan content of three species of Halymenia (Halymenia durvillaea, Halymenia maculata and Halymenia dilatata) that occurred along the coast of Iligan Bay. Powdered samples of Halymenia were analyzed for carrageenan content using extraction method while analysis of crude protein was done using Kjeldahl method, total fat by hydrolysis and solvent extraction method, ash content by gravimetric method, moisture content by air oven method, and total carbohydrate content by computational method. Result showed significant variation in the levels of carrageenan and biochemical composition among species. Halymenia durvillaea ranked highest in carrageenan yield, protein, fat, carbohydrate, ash and moisture content. This species can be a potential source for carrageenan production.


Copyright © 2016
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Carrageenan and biochemical composition of three species of Halymenia (Halymenia durvillaea Bory de Saint-Vincent, Halymenia maculata J. Agardh and Halymenia dilatata Zanardini) in Initao, Misamis Oriental, Mindanao, Philippines

Ahmad F, Sulaiman MR, Saimon W, Yee CF, Matanjun P. 2012. Proximate compositions and total phenolic contents of selected edible seaweed from Semporna, Sabah, Malaysia. Borneo Science 31, 74-83.

AOAC. 2008. Official Methods of Analysis of AOAC International, 18th Edition, AOAC International Publisher, Gaithersburg.

Arasaki S, Arasaki T. 1983. Low calorie, high nutrition vegetables from the sea. To help you look and feel better. Japan Publications, Inc., Tokyo. 1-196.

Ask E, Batibasaga A, Zertuche-Gonzáles JM, de San M. 2003. Three decades of Kappaphycus alvarezii (Rhodophyta) introduction to non-endemic location. Proceedings of International Seaweed Symposium 17, 49-57.

Banerjee K, Ghosh R, Homechaudhuri S, Mitra A. 2009. Seasonal variation in the biochemical composition of red seaweed Catenella repens from Gangetic delta, northeast coast of India. Journal of Earth System Science 118(5), 497-505. http://dx.doi.org/10.1007/s12040-009-0045-2

Chakraborty S, Bhattacharya T. 2012. Nutrient composition of marine benthic algae found in the Gulf of Kutch coastline, Gujarat, India. Journal of Algal Biomass Utilization 3(1), 32-38.

Dawczynski C, Schubert R, Jahreis G. 2007. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry 103, 891-899. http://dx.doi.org/10.1016/j.foodchem.2006.09.041

De Smedt G, De Clerck O, Leliaert F, Coppejans E, Liao L. 2001. Morphology and systematics of the genus Halymenia C. Agardh (Halymeniales, Rhodophyta) in the Philippines. Nova Hedwigia 73 (3), 293-322. http://dx.doi.org/10.1127/nova.hedwigia/73/2001/2 93

El-Tawil BAH, Khalil AN. 1983. Chemical constituents of some algal species from Abu Qir Bay, Egypt. Journal of the Faculty of Marine Science 3, 85-94.

Fleurence J. 1999. Seaweed proteins: biochemical nutritional aspects and potential uses. Trends in Food Science and Technology 10, 25-28. http://dx.doi.org/10.1016/S09242244(99)00015-1

Foster GG, Hodgson AN. 1998. Consumption and apparent dry matter digestibility of six intertidal macro-algae by Turbo sarnaticus (Mollusca: Vetigastropoda: Turbinidae). Aquaculture 167, 211-227. http://dx.doi.org/10.1016/S00448486(98)00315-9

Freile-Pelegrin Y, Robledo D. 2006. Carrageenan of Eucheuma isiforme (Solieriaceae, Rhodophyta) from Yucatán, Mexico. II. Seasonal variations in carrageenan and biochemical characteristics. Botanica Marina 49, 72-78. http://dx.doi.org/10.1515/BOT.2006.009

Harnedy PA, Fitzgerald RJ. 2011. Bioactive proteins, peptides, and amino acids from macroalgae. Journal of Applied Phycology 23(3), 543-597. http://dx.doi.org/10.1007/s10811-010-9632-5

Hayashi L, De Paula EJ, Chow F. 2007. Growth rate and carrageenan analyses in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the tropical waters of Sao Paulo state, Brazil. Journal of Applied Phycology 19, 393-399. http://dx.doi.org/10.1007/s10811-006-9135-6

Holdt S, Kraan S. 2011. Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology 23, 543-597. http://dx.doi.org/10.1007/s10811-010-9632-5

Hung L, Hori K, Nang H, Kha T, Hoa LT. 2009. Seasonal changes in growth rate, carrageenan yield and lectin content in the red alga Kappaphycus alvarezii cultivated in Camranh Bay, Vietnam. Journal of Applied Phycology 21, 265-272. http://dx.doi.org/10.1007/s10811-008-9360-2

James D. 1990. Summary of international production demand for seaweed colloids. In: Technical resource paper. Regional workshop on the culture and utilization of seaweeds. Vol. II Regional seafaring development and demonstration project RAS/90/002, 143-147.

Khairy HM, El-Shafay SM. 2013. Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 55(2), 435-452. http://dx.doi.org/10.5697/oc.55-2.435

Kho F. 2014. Biochemical composition of three red algae (Halymenia durvillaea Bory de Saint-Vincent, Halymenia dilatata J. Agardh and Halymenia maculata Zanardini) in Barangay Tubigan, Initao, Misamis Oriental. Undergraduate thesis, Mindanao State University, Iligan Institute of Technology, Iligan City, Philippines, 1-42.

Kolb N, Vallorani L, Stocchi V. 1999. Chemical composition and evaluation of protein quality by amino acid score method of edible brown marine algae arame (Eisenia bicyclis) and hijiki (Hijikia fusiforme). Acta Alimentaria 28(3), 213–222. http://dx.doi.org/10.1556/AAlim.28.1999.3.1

Kumar M, Kumari P, Trivedi N. 2011. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. Journal of Applied Phycology 23 (5), 797-810. http://dx.doi.org/10.1007/s10811-010-9578-7

Mabeau S, Fleurence J. 1993. Seaweed in food products: biochemical nutritional aspects. Trends in Food Science and Technology 4, 103-107. http://dx.doi.org/10.1016/09242244(93)90091-N

MacArtain P, Gil CIR, Brooks M, Campbell R, Rowland IR. 2007. Nutritional value of edible seaweeds. Nutritional Reviews 65, 535-543. http://dx.doi.org/10.1111/j.17534887.2007.tb00278.x

Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC. 2006. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology 97, 2402-2406. http://dx.doi.org/10.1016/j.biortech.2005.10.014

Matanjun P, Mohamed S, Mustapha NM, Muhammad K, Ming CH. 2008. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. Journal of Applied Phycology 20, 367-373. http://dx.doi.org/10.1007/s10811-007-9264-6

Matanjun P, Mohamed S, Mustapha NM, Muhammad K. 2009. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. Journal of Applied Phycology 21, 75-80. http://dx.doi.org/10.1007/s10811-008-9326-4

McHugh DJ. 2006. The seaweed industry in the Pacific islands. Retrieved from http://ageconsearch.umn.edu/bitstream/118339/2/ WP61%28web%29.pdf

Morrissey J, Kraan S, Guiry MD. 2001. A guide to commercially important seaweeds on the Irish coast. Bord Iascaigh Mhara, Dun Laoghaire, Co. Dublin. 1 – 66.

Mtolera MSP, Buriyo AS. 2004. Studies on Tanzanian Hypneaceae: seasonal variation in content and quality of kappa-carrageenan from Hypnea musciformis (Gigartinales: Rhodophyta). Western Indian Ocean Journal of Marine Science 3, 43-49.

Muñoz J, Freile-Pelegrin Y, Robledo D. 2004. Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) color strains in tropical waters of Yucatan, Mexico. Aquaculture 239, 161-177. http://dx.doi.org/10.1016/j.aquaculture.2004.05.043

Necas J, Bartosikova L. 2013. Carrageenan: a review. Veterinarni Medicina 58 (4), 187-205.

Nor Salmi A, Shamsul M, Ibrahim CO, Hasmah A. 2012. Proximate compositions of red seaweed, Gracilaria manilaensis. UMT 11th International Annual Symposium on Sustainability Science and Management. Terrengganu, Malaysia.

Norziah MH, Ching CY. 2000. Nutritional composition of edible seaweed Gracilaria changgi. Food Chemistry 68, 69-76. http://dx.doi.org/10.1016/S03088146(99)00161-2

Omar HH, Abdullatif BM, El-Kazan MM, El-Gendy AM. 2013. Red sea water and biochemical composition of seaweeds at southern coast of Jeddah, Saudi Arabia. Life Science Journal 10(4), 1073-1080. http://dx.doi.org/10.7537/marslsj100413.140

Pelinggon RE, Tito OD. 2009. Module 7: Seaweeds production. WIMSU Printing Press, Zamboanga City, Philippines.

Rohani-Ghadikolaei K, Abdulalian E, Ng W. 2012. Evaluation of the proximate fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. Journal of Food Science Technology 49, 774-780. http://dx.doi.org/10.1007/s13197-010-0220-0

Ruperez P. 2002. Mineral content of edible marine seaweeds. Food Chemistry 79, 23-26. http://dx.doi.org/10.1016/S03088146(02)00171-1

Seenivasan R, Rekha M, Indu H, Geetha S. 2012. Antibacterial activity and phytochemical analysis of selected seaweeds from Mandapam Coast, India. Journal of Applied  Pharmaceutical Science 2 (9), 159-169. http://dx.doi.org/10.7324/JAPS.2012.21030

Siddique MAM, Aktar M, Mohd Khatib MA. 2013a. Proximate chemical composition and amino acid profile of two red seaweeds (Hypnea pannosa and Hypnea musciformis) collected from St. Martin’s Island, Bangladesh. Journal of Fisheries Sciences.com 7 (2), 178-186. http://dx.doi.org/10.3153/jfscom.2013018

Siddique MAM,  Khan  MSK,  Bhuiyan  MKA. 2013b. Nutritional composition and amino acid profile of a sub-tropical red seaweed Gelidium pusillum collected from St. Martin’s Island, Bangladesh. International Food Research Journal 20 (5), 2287-2292.

Taboada C, Millan R, Miguez MI. 2011. Evaluation of the marine algae Ulva rigida as a food supplement: effect of intake on intestinal, hepatic, and renal enzyme activities in rats. Journal of the Science of Food and Agriculture 93, 1863-1868. http://dx.doi.org/10.1002/jsfa.5981

Taboada C, Millan R, Miguez MI. 2013. Nutritional value of the marine algae wakame (Undaria pinnitifida) and nori (Porphyra purpurea)  as  food  supplements. Journal of Applied Phycology 25, 1271-1276. http://dx.doi.org/10.1007/s10811-012-9951-9

Takamatsu S, Tosa T. 1993. Production of L-alanine and D-aspartic acid. Bioprocess Technology 16, 25–35.

USDA. 2001. Nutrient database for standard reference. Release 14, Agricultural Research Service, Beltsville Human Nutrition Research Center, Maryland, U.S. Department of Agriculture (USDA), U.S.A.

Van de Velde F, Lourenco ND, Pinheiro HM, Bakkerd M. 2002. Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Advanced Synthesis and Catalysis 344, 815–835. http://dx.doi.org/10.1002/16154169(200209)344:8< 815::AID-ADSC815>3.0.CO;2-H

Wong KH, Cheung CK. 2000. Nutritional evaluation of some subtropical red and green seaweeds. Part I: Proximate composition, amino acid profiles and some physicochemical properties. Food Chemistry 71, 475-482. http://dx.doi.org/10.1016/S03088146(00)00175-8

Zacharopoulos VR, Phillips DM. 1997. Vaginal formulations of carrageenan protect mice from herpes simplex virus infection. Clinical and Diagnostic Laboratory Immunology 4, 465–468.