Characterization of bio-oil produced obtained fast pyrolysis of groundnuts shell

Paper Details

Research Paper 01/07/2013
Views (631)
current_issue_feature_image
publication_file

Characterization of bio-oil produced obtained fast pyrolysis of groundnuts shell

Suntorn Suttibak
Int. J. Biosci. 3(7), 82-89, July 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

This article reports a study of characterization of bio-oil produced from fast pyrolysis of groundnuts shell in a fluidized-bed reactor. The temperature of pyrolysis was varied in the ranges 400-500°C and using a biomass particle size of 250-425 µm. Results showed that the optimum pyrolysis temperatures for groundnuts shell was 475°C, which gave maximum bio-oil yields of 63.48 wt.% on dry biomass basis. The bio-oil products were also tested for their basic properties. Results showed that the water solids and ash contents of the bio-oil were 18.56 wt.%, 0.89 wt.% and 0.03 wt.%, respectively. Moreover, the density, pH value, low heating value (LHV) and viscosity measured to be 1,215 kg/m3, 4.20, 31.07 MJ/kg and 24.56 cSt, respectively.

Abnisa F, Wan Daud WMA, Sahu JN. 2011. Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass and Bioenergy 35, 3604-3616. http://dx.doi.org/10.1016/j.biombioe.2011.05.011

Balat M, Balat M, Kirtay E, Balat H. 2009. Main routes for the thermo-conveasion of biomass into fuels and chemicals. Past 1: Pyrolysis systems. Energy  Conversion  and  Management 50, 3147-3157.  http://dx.doi.org/10.1016/j.enconman.2009.08.014

Bridgwater AV. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38, 68-4. http://dx.doi.org/10.1016/j.biom bioe.2011.01.048

Channiwala SA, Parikh PP. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051-1063.

ECN. 2013. “Phyllis, database for biomass and waste,” Energy Research Centre of the Netherlands (ECN).

FAO. 2013. Food and Agriculture Organization of the United Nations for a world without hunger ( FAOSTAT). Available from http://faosat.fao.org/ (accessed on February 2, 2013).

Oasmaa A, Elliott DC, Muller S. 2009. Quality Control in Fast Pyrolysis Bio-Oil Production and Use. Environmental Progress and Sustainable Energy 28, 404-409. http://dx.doi.org/10.1002/ep.10382

Oasmaa A, Peacocke C. 2010. Properties and fuel use of biomassderived fast pyrolysis liquids: A guide. VTT Publications, 134 p.

Pattiya A, Suttibak S. 2012. Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues. Bioresource Technology 116, 107-113. http://dx.doi.org/10.1016/j.biortech.2012.03.116

Sheng CD, Azevedo JLT. 2005. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy 28, 499-507. http://dx.doi.org/10.1016/j.biombioe.2004.11.008

Tsai WT, Lee MK, Chang YM. 2007. Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 98, 22-28. http://dx.doi.org/10.1016/j.biortech.2005.12.005

Related Articles

Rice productivity and soil hydrodynamic properties under lowland Elaeis guineensis and Borassus aethiopum: An asset rice agroforestry system

Sissou Zakari, Pierre Tovihoudji, Janvier Egah, Sékaro Amamath Boukari, Raymon Bio Gonga, Mouiz W. I. A. Yessoufou, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(4), 177-190, October 2025.

Population dynamic parameters for Pseudupeneus prayensis (Mullidae) (Cuvier, 1829) in Ivorian continental shelf

Christian Bernard Tia, Abdoulaye Kone, Diomande Loua, Soumaïla Sylla, Essetchi Paul Kouamelan, Int. J. Biosci. 27(4), 169-176, October 2025.

Evaluation of phytochemicals and in vitro biological activities of Semecarpus kurzii leaf extract

Deepika, V. Ambikapathy, S. Babu, A. Panneerselvam, Int. J. Biosci. 27(4), 159-168, October 2025.

Comparative analysis of the influence of temporal, seasonal and behavioral factors using XGBoost for predicting traveled distances

Y. F. Lankoande, A. K. Gandema, S. Ouedraogo-Kone, A. Kone, Y. Sawadogo, J. Moses, Int. J. Biosci. 27(4), 150-158, October 2025.

The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Amani A. R. Filimban, Khulud A. Wathi, Int. J. Biosci. 27(4), 140-149, October 2025.

Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Ajeena Davis, Jini Joseph, Int. J. Biosci. 27(4), 130-139, October 2025.

Gill ectoparasites of the mugilidae from the Ebrié lagoon, Abidjan (Côte d’Ivoire)

Eby Yoboué Gnamma Honorine Alla, Carel Wilfried Bermian Dibi-Ahui, Fidèle Kouassi Kouakou, Abouo Béatrice Adepo-Gourene, Int. J. Biosci. 27(4), 123-129, October 2025.

Impacts of diverse water management systems on growth and yield of two prominent boro rice cultivars in Bangladesh

Zahidul Islam, Md Ekhlasur Rahman, Md Khayrul Islam Bashar, Sharmin Sultana, Md Taharat Al Tauhid, Md Rabiul Islam, Md Shahed Hossain, Md Musa Mondal, Pradip Kumar Biswas, Int. J. Biosci. 27(4), 110-122, October 2025.