Characterization of bioactive compounds in the ant Leptogenys diminuta (Smith, 1857) using Gas Chromatography – Mass Spectrophotometry

Paper Details

Research Paper 01/06/2022
Views (606) Download (64)
current_issue_feature_image
publication_file

Characterization of bioactive compounds in the ant Leptogenys diminuta (Smith, 1857) using Gas Chromatography – Mass Spectrophotometry

Johanna Joy S. Katada, Musmera A. Mangorangka, Mark Ryan P. Villena, Isidro B. Arquisal, Lady Jane Morilla, Eddie P. Mondejar
Int. J. Biosci.20( 6), 11-17, June 2022.
Certificate: IJB 2022 [Generate Certificate]

Abstract

Ants are one of the diverse groups of insects and are less explored reservoirs of many bioactive natural products, including proteins and peptides. This study was conducted to characterize the compounds of the worker ant, Leptogenys diminuta (Smith, 1857). Hence, this study will demonstrate the importance of ants as a potential source of bioactive compounds found in nature. Thirty samples of L. diminuta were extracted using hexane solution and the compounds were detected using Gas Chromatography-Mass Spectrophotometry (GC-MS), and the mass spectra of compounds were identified using the NIST08 Standard Reference Database. The analysis identified seven bioactive compounds from L. diminuta with pharmacological and industrial applications, including the first reports of the presence of 2,4-ditert-butylphenol in Ponerine worker ant’s hexane extract. Thus, more studies are needed to explore other essential natural products with various applications found in ants.

VIEWS 95

Arbiser JL, Kau T, Konar M, Narra K, Ramchandran R, Summers SA, Vlahos CJ, Ye K, Perry BN, Matter W, Fischl A, Cook J, Silver PA, Bain J, Cohen P, Whitmire D, Furness S, Govindarajan B, Bowen JP. 2007. Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood 109(2), 560–565. https://doi.org/10.1182/blood-2006-06-029934

AntWeb. Version 8.66. California Academy of Science, online atAccessed8 November 2021. https://www.antweb.org.

Becker B, Kolker AE, Krupin T. 1967. Isosorbide:An Oral Hyperosmotic Agent. 78(2), 147–150. http://dx.doi.org/10.1001/archopht.1967.00980030149007

Brophy JJ, Nelson D. 1985. 2,5-Dimethyl-3-n-propylpyrazine from the head of the bull ant Myrmecia gulosa (Fabr.). Insect Biochemistry 15(3), 363-365.

Cecutti MC, Mouloungui Z, Gaset A. 1998. Synthesis of new diesters of 1, 4:3, 6-dianhydro-d-glucitol by esterification with fatty acid chlorides. Bioresource Technology, Elsevier, p 63-67. Ffhal-02089357f

Dodou Lima HV, de Paula Cavalcante CS, Rádis-Baptista G. 2020. Antifungal In Vitro Activity of Pilosulin- and Ponericin-Like Peptides from the Giant AntDinoponera quadricepsand Synergistic Effects with Antimycotic Drugs. Antibiotics (Basel, Switzerland) 9(6), 354. https://doi.org/10.3390/antibiotics9060354

Drees BM. 2014. Medical Problems and Treatment Considerations for the Red Imported Fire Ant. Texas A&M AgriLife Extension Service. https://fireant.tamu.edu/files/2014/03/ENTO_005.pdf26.

Duval A, Malécot CO, Pelhate M, Piek T. 1992.Poneratoxin, a new toxin from an ant venom, reveals an interconversion between two gating modes of the Na channels in frog skeletal muscle fibres.Pflügers Arch420, 239–247. https://doi.org/10.1007/BF00374453

Ferreira SB, Kaiser CR. 2012. Pyrazine derivatives: a patent review (2008 – present).Expert opinion on therapeutic patents22(9), 1033–1051. https://doi.org/10.1517/13543776.2012.714370     https://doi.org/10.1016/0020-1790(85)90027-7.

Jones TH, Garraffo HM, Blum MS., Everett DM, Hasting H, Ware AB. 1998.Elucidation of Dimethylalkylpyrazines from the AntStreblognathus aethiopicusby GC-FTIR. Journal of Chemical Ecology 24, 125–134. https://doi.org/10.1023/A:1022345114057

Junior V, Larsson C. 2015. Anaphylaxis caused by stings from the Solenopsis invicta, lava-pés ant or red imported fire ant. Anais Brasileiros de Dermatologia 90, 22-5. http://dx.doi.org/10.1590/abd1806-4841.20153420.

Lima DB, Mello CP, Bandeira I, Pessoa Bezerra de Menezes R, Sampaio TL, Falcão CB, Morlighem J, Rádis-Baptista G, Martins A. 2018. The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity.Biological Chemistry 399(2), 187–196. https://doi.org/10.1515/hsz-2017-0198

Lorber J. 1973. Isosorbide in the medical treatment of infantile hydrocephalus,Journal of Neuroscience 39(6), 702-711. Retrieved Nov 3, 2021, from https://thejns.org/view/journals/j-neurosurg/39/6/article-p702.xml

Morgan D, Mandava H. 1988. CRC Handbook of Natural Pesticides: Pheromone, Part A, Volume IV. CRC Press, Inc., Florida, USA.

Mortzfeld F, Hashem C, Vrankova K, Winkler M, Rudroff F. 2020.Pyrazines – valuable flavour & fragrance compounds: Biocatalytic synthesis and industrial applications.Biotechnology Journal 15(11). https://doi.org/10.1002/biot.202000064

National Center for Biotechnology Information. 2021. PubChem Compound Summary for CID 5541, Triacetin. Retrieved July 21, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Triacetin.

Ong KT, Liu ZQ, Tay MG. 2017. Review on the Synthesis of Pyrazine and Its Derivatives.Borneo Journal of Resource Science and Technology 7(2), 60-75. https://doi.org/10.33736/bjrst.591.2017

Orivel J, Redeker V, Le Caer J-P, Krier F, Revol-Junelles AM, Longeon A, Chaffotte A, Deiean A, Rossier J. 2001. Ponericins, New Antibacterial and Insecticidal Peptides from the Venom of the Ant Pachycondyla goeldii. Journal of Biological Chemistry 276(1), 17823–17829.

Postman TL. 2009. Neurotoxic Animal Poisons and Venoms (Ed. Dobbs, M.R.) Clinical Neurotoxicology, W.B. Saunders, p.463-489, https://doi.org/10.1016/B978-032305260-3.50049-6.

Quinn MJ,Ziolkowski D. 2015. Wildlife Toxicity Assessment for Triacetin. In Williams, M.A., Reddy, G., Quinn, M.J., Johnson, M.S. (Eds.), Wildlife Toxicity Assessment for Chemicals of Military Concerns (pp.291-301). Elsevier, https://doi.org/10.1016/B978-0-12-8000205.00017-X

Shields V. 2018. Introductory Chapter: The Complex World of Ants. 0.5772/intechopen.80387.

Silva R, Fox E, Gomes FM, Feijó DF, Ramos I, Koeller CM, Costa T, Rodrigues NS, Lima AP, Atella GC, Miranda K, Schoijet AC, Alonso GD, de Alcântara Machado E, Heise N. 2020. Venom alkaloids against Chagas disease parasite: search for effective therapies.Scientific Reports 10(1), 10642. https://doi.org/10.1038/s41598-020-67324-8

Sullivan DC, Flowers H, Rockhold R, Herath HM, Nanayakkara NP. 2009. Antibacterial activity of synthetic fire ant venom: the solenopsins and isosolenopsins. The American Journal of Medical Sciences 338(4), 287–291. https://doi.org/10.1097/MAJ.0b013e3181af8270.

Szolajska E, Poznanski J, Ferber ML, Michalik J, Gout E, Fender P, Bailly I, Dublet B, Chroboczek J. 2001. Poneratoxin, a neurotoxin from ant venom Structure and expression in insect cells and construction of a bio-insecticide. European Journal Biochemistry 271, 2127–2136. http://dx.doi.org/10.1111/j.1432-1033.2004.04128.x

Téné N, Bonnafé E, Berger F, Rifflet A, Guilhaudis L, Ségalas-Milazzo I, Pipy B, Coste A, Leprince J, Treilhou M. 2016. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides 79, 103–113. https://doi.org/10.1016/j.peptides.2016.04.001

Touchard A, Aili SR, Fox EGP, Escoubas P, Orivel J, Nicholson GM, Dejean A. 2016. The Biochemical Toxin Arsenal from Ant Venoms.Toxins 8(1), 30. https://doi.org/10.3390/toxins8010030

Xu S, Errabeli R, Feener DH, Noble K, Attygale AB. 2018. Alkyl-Dimethylpyrazines in Mandibular Gland Secretions of FourOdontomachusAnt Species (Formicidae: Ponerinae). Journal of Chemical Ecology44, 444–451. https://doi.org/10.1007/s10886-018-0948-y

Yi GB, McClendon D, Desaiah D, Goddard J. Lister A, Moffitt J, Vander Meer RK, deShazo R, Lee KS, Rockhold RW. 2003. Fire Ant Venom Alkaloid, Isosolenopsin A, a Potent and Selective Inhibitor of Neuronal Nitric Oxide Synthase. International Journal of Toxicology 22, 81–86. http://dx.doi.org/10.1080/10915810390198375.

Zhao F, Wang P, Lucardi RD, Su Z, Li S. 2020. Natural Sources and Bioactivities of 2, 4-Di-Tert-Butylphenol and Its Analogs.Toxins12(1), 35. https://doi.org/10.3390/toxins12010035