Circulating tumor cell detection using magnetic nanosensor targeting epithelial–mesenchymal transition-specific markers

Paper Details

Research Paper 09/09/2025
Views (388)
current_issue_feature_image
publication_file

Circulating tumor cell detection using magnetic nanosensor targeting epithelial–mesenchymal transition-specific markers

Shubham Singh, Charan Singh Pawar, Nagarajan Rajendra Prasad
Int. J. Biosci. 27(3), 62-75, September 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

Circulating tumor cells (CTCs) are among the major causes of cancer metastasis, and their detection is critical in the context of early diagnosis and metastatic cancer marker. Despite various advances, well established approaches for CTCs are limited. This study aimed to develop a magnetic nanosensor-based approach for detecting CTCs across multiple cancers. Herein, iron oxide magnetic nanoparticles (MNP) were fabricated and coated with silica, characterized, and functionalized with antibody for epithelial cell adhesion molecule, an epithelial–mesenchymal transition marker. Additionally, the detection efficacy of the developed nanosensor was evaluated for HT-29 and MCF-7 cancer cell lines in vitro. Both base-MNPs (B-MNPs) and silica-coated MNPs (C-MNPs) showed notable characteristic peaks in ultraviolet-visible and Fourier-transform infrared spectra. Field-emission scanning electron microscopy showed the structural differences, with B-MNPs exhibiting a relatively uniform spherical distribution, whereas C-MNPs showed a markedly rough morphology. The results of zeta potential (−24 and −31 mV) and particle size analyses (78 and 112 nm) for B-MNPs and C-MNPs, respectively, indicated their physicochemical stability. Additionally, confocal laser scanning microscopy showed the successful antibody functionalization on the nanoparticle surface, and immunofluorescence images showed effective detection of both HT-29 and MCF-7 cells in vitro, with notable differences. Altogether, the findings of this study demonstrate that the proposed nanosensor could achieve effective detection of tumor cells regarding multi-cancer detection, providing a research basis for further development of an established protocol for circulating tumor cell detection.

Baeuerle PA, Gires O. 2007. EpCAM (CD326) finding its role in cancer. British Journal of Cancer 96, 417–423. https://doi.org/10.1038/sj.bjc.6603494

Chang Z, Wang Z, Shao D, Yue J, Xing H, Li L, Ge M, Li M, Yan H, Hu H, Xu Q, Dong W. 2018. Shape engineering boosts magnetic mesoporous silica nanoparticle-based isolation and detection of circulating tumor cells. ACS Applied Materials & Interfaces 10, 10656–10663. https://doi.org/10.1021/acsami.7b19325

Chauhan A, Kaur R, Ghoshal S, Pal A. 2021. Exploration of circulating tumour cell (CTC) biology: A paradigm shift in liquid biopsy. Indian Journal of Clinical Biochemistry 36, 131–142. https://doi.org/10.1007/s12291-020-00923-4

Cho H, Indig GL, Weichert J, Shin HC, Kwon GS. 2012. In vivo cancer imaging by poly(ethylene glycol)-b-poly(ɛ-caprolactone) micelles containing a near-infrared probe. Nanomedicine: Nanotechnology, Biology and Medicine 8, 228–236. https://doi.org/10.1016/j.nano.2011.06.009

Cimino A, Halushka M, Illei P, Wu X, Sukumar S, Argani P. 2010. Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Research and Treatment 123, 701–708. https://doi.org/10.1007/s10549-009-0671-z

Cohen SJ, Alpaugh RK, Gross S, O’Hara SM, Smirnov DA, Terstappen LWMM, Allard WJ, Bilbee M, Cheng JD, Hoffman JP, Lewis NL, Pellegrino A, Rogatko A, Sigurdson E, Wang H, Watson JC, Weiner LM, Meropol NJ. 2006. Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer. Clinical Colorectal Cancer 6, 125–132.https://doi.org/10.3816/CCC.2006.n.029

Debnath P, Huirem RS, Dutta P, Palchaudhuri S. 2022. Epithelial–mesenchymal transition and its transcription factors. Bioscience Reports 42, BSR20211754. https://doi.org/10.1042/BSR20211754

Ding N, Sano K, Kanazaki K, Ohashi M, Deguchi J, Kanada Y, Ono M, Saji H. 2016. In vivo HER2-targeted magnetic resonance tumor imaging using iron oxide nanoparticles conjugated with anti-HER2 fragment antibody. Molecular Imaging and Biology 18, 870–876. https://doi.org/10.1007/s11307-016-0977-2

Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Piñeros M, Znaor A, Soerjomataram I, Bray F. 2024. Global cancer observatory: Cancer today. International Agency for Research on Cancer. https://gco.iarc.who.int/media/globocan/factsheets/cancers/39-all-cancers-fact-sheet.pdf

Garg M. 2013. Epithelial-mesenchymal transition – activating transcription factors – multifunctional regulators in cancer. World Journal of Stem Cells 5, 188–195. https://doi.org/10.4252/wjsc.v5.i4.188

Gerstberger S, Jiang Q, Ganesh K. 2023. Metastasis. Cell 186, 1564–1579. https://doi.org/10.1016/j.cell.2023.03.003

Gonzalez DM, Medici D. 2014. Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling 7, re8. https://doi.org/10.1126/scisignal.2005189

Huang X, O’Connor R, Kwizera EA. 2017. Gold nanoparticle based platforms for circulating cancer marker detection. Nanotheranostics 1, 80–102. https://doi.org/10.7150/ntno.18216

Imrich S, Hachmeister M, Gires O. 2012. EpCAM and its potential role in tumor-initiating cells. Cell Adhesion & Migration 6, 30–38. bhttps://doi.org/10.4161/cam.18953

Jia F, Wang Y, Fang Z, Dong J, Shi F, Zhang W, Wang Z, Hu Z. 2021. Novel peptide-based magnetic nanoparticle for mesenchymal circulating tumor cells detection. Analytical Chemistry 93, 5670–5675. https://doi.org/10.1021/acs.analchem.1c00577

Königsberg R, Obermayr E, Bises G, Pfeiler G, Gneist M, Wrba F, de Santis M, Zeillinger R, Hudec M, Dittrich C. 2011. Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncologica 50, 700–710. https://doi.org/10.3109/0284186X.2010.549151

Kwak B, Lee J, Lee D, Lee K, Kwon O, Kang S, Kim Y. 2017. Selective isolation of magnetic nanoparticle-mediated heterogeneity subpopulation of circulating tumor cells using magnetic gradient based microfluidic system. Biosensors and Bioelectronics 88, 153–158. https://doi.org/10.1016/j.bios.2016.08.002

Lamouille S, Xu J, Derynck R. 2014. Molecular mechanisms of epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology 15, 178–196. https://doi.org/10.1038/nrm3758

Lianidou E, Pantel K. 2019. Liquid biopsies. Genes, Chromosomes and Cancer 58, 219–232. https://doi.org/10.1002/gcc.22695

Liu Y, Li R, Zhang L, Guo S. 2022. Nanomaterial-based immunocapture platforms for the recognition, isolation, and detection of circulating tumor cells. Frontiers in Bioengineering and Biotechnology 10, 850241. https://doi.org/10.3389/fbioe.2022.850241

Marciello M, Luengo Y, Morales MP. 2016. Iron oxide nanoparticles for cancer diagnosis and therapy. In: Nanoarchitectonics for smart delivery and drug targeting (pp. 667–694). Elsevier. https://doi.org/10.1016/B978-0-323-47347-7.00024-0

Medley CD, Bamrungsap S, Tan W, Smith JE. 2011. Aptamer-conjugated nanoparticles for cancer cell detection. Analytical Chemistry 83, 727–734. https://doi.org/10.1021/ac102263v

Myung JH, Tam KA, Park S, Cha A, Hong S. 2016. Recent advances in nanotechnology-based detection and separation of circulating tumor cells. WIREs Nanomedicine and Nanobiotechnology 8, 223–239. https://doi.org/10.1002/wnan.1360

Nicolazzo C, Raimondi C, Francescangeli F, Ceccarelli S, Trenta P, Magri V, Marchese C, Zeuner A, Gradilone A, Gazzaniga P. 2017. EpCAM-expressing circulating tumor cells in colorectal cancer. The International Journal of Biological Markers 32, 415–420. https://doi.org/10.5301/ijbm.5000284

Onstenk W, Kraan J, Mostert B, Timmermans MM, Charehbili A, Smit VTHBM, Kroep JR, Nortier JWR, van de Ven S, Heijns JB, Kessels LW, van Laarhoven HWM, Bos MMEM, van de Velde CJH, Gratama JW, Sieuwerts AM, Martens JWM, Foekens JA, Sleijfer S. 2015. Improved circulating tumor cell detection by a combined EpCAM and MCAM CellSearch enrichment approach in patients with breast cancer undergoing neoadjuvant chemotherapy. Molecular Cancer Therapeutics 14, 821–827. https://doi.org/10.1158/1535-7163.MCT-14-0653

Opoku-Damoah Y, Assanhou AG, Sooro MA, Baduweh CA, Sun C, Ding Y. 2018. Functional diagnostic and therapeutic nanoconstructs for efficient probing of circulating tumor cells. ACS Applied Materials & Interfaces 10, 14231–14247. https://doi.org/10.1021/acsami.7b17896

Pantel K, Speicher MR. 2016. The biology of circulating tumor cells. Oncogene 35, 1216–1224. https://doi.org/10.1038/onc.2015.192

Parvin F, Nayna OK, Tareq SM, Rikta SY, Kamal AK. 2018. Facile synthesis of iron oxide nanoparticle and synergistic effect of iron nanoparticle in the presence of sunlight for the degradation of DOM from textile wastewater. Applied Water Science 8, 73. https://doi.org/10.1007/s13201-018-0719-5

Peters ITA, Hilders CGJM, Sier CFM, Vahrmeijer AL, Smit VTHBM, Baptist Trimbos J, Kuppen PJK. 2016. Identification of cell-surface markers for detecting breast cancer cells in ovarian tissue. Archives of Gynecology and Obstetrics 294, 385–393. https://doi.org/10.1007/s00404-016-4036-7

Ramaker K, Bade S, Röckendorf N, Meckelein B, Vollmer E, Schultz H, Fröschle GW, Frey A. 2016. Absence of the epithelial glycocalyx as potential tumor marker for the early detection of colorectal cancer. PLOS ONE 11, e0168801. https://doi.org/10.1371/journal.pone.0168801

Riethdorf S, O’Flaherty L, Hille C, Pantel K. 2018. Clinical applications of the CellSearch platform in cancer patients. Advanced Drug Delivery Reviews 125, 102–121. https://doi.org/10.1016/j.addr.2018.01.011

Rogalla S, Contag CH. 2015. Early cancer detection at the epithelial surface. The Cancer Journal 21, 179–187. https://doi.org/10.1097/PPO.0000000000000122

Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. 2001. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17, 2900–2906. https://doi.org/10.1021/la0008636

Spizzo G, Fong D, Wurm M, Ensinger C, Obrist P, Hofer C, Mazzoleni G, Gastl G, Went P. 2011. EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis. Journal of Clinical Pathology 64, 415–420. https://doi.org/10.1136/jcp.2011.090274

Steinestel K, Eder S, Schrader AJ, Steinestel J. 2014. Clinical significance of epithelial–mesenchymal transition. Clinical and Translational Medicine 3, e17. https://doi.org/10.1186/2001-1326-3-17

Suresh D, Ghoshdastidar S, Gangula A, Mukherjee S, Upendran A, Kannan R. 2020. Magnetic iron nanocubes effectively capture epithelial and mesenchymal cancer cells. ACS Omega 5, 23724–23735. https://doi.org/10.1021/acsomega.0c02699

Van der Toom EE, Verdone JE, Gorin MA, Pienta KJ. 2016. Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget 7, 62754–62766. https://doi.org/10.18632/oncotarget.11191

Weissenstein U, Schumann A, Reif M, Link S, Toffol-Schmidt UD, Heusser P. 2012. Detection of circulating tumor cells in blood of metastatic breast cancer patients using a combination of cytokeratin and EpCAM antibodies. BMC Cancer 12, 206. https://doi.org/10.1186/1471-2407-12-206

Wenqi D, Li W, Shanshan C, Bei C, Yafei Z, Feihu B, Jie L, Daiming F. 2009. EpCAM is overexpressed in gastric cancer and its downregulation suppresses proliferation of gastric cancer. Journal of Cancer Research and Clinical Oncology 135, 1277–12853.https://doi.org/10.1007/s00432-009-0569-5

Williams SCP. 2013. Circulating tumor cells. Proceedings of the National Academy of Sciences 110, 4861–4861. https://doi.org/10.1073/pnas.1304186110

Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, García de Herreros A, Goodall GJ, Hadjantonakis AK, Huang RYJ, Kalcheim C, Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massagué J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G; EMT International Association (TEMTIA). 2020. Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology 21, 341–352. https://doi.org/10.1038/s41580-020-0237-9

Yang Y, Huang G, Lian J, Long C, Zhao B, Liu X, Zhang B, Ye W, Chen J, Du L, Jiang Z, Liu J, Zhang J, Hu C, Chen Q, Hong X. 2024. Circulating tumour cell clusters: isolation, biological significance and therapeutic implications. BMJ Oncology 3, e000437. https://doi.org/10.1136/bmjonc-2024-000437

Yao D, Dai C, Peng S. 2011. Mechanism of the mesenchymal–epithelial transition and its relationship with metastatic tumor formation. Molecular Cancer Research 9, 1608–1620. https://doi.org/10.1158/1541-7786.MCR-10-0568

Zhou L, Zhu Y. 2018. The EpCAM overexpression is associated with clinicopathological significance and prognosis in hepatocellular carcinoma patients: A systematic review and meta-analysis. International Journal of Surgery 56, 274–280. https://doi.org/10.1016/j.ijsu.2018.06.025

Zhou S, Xu H, Duan Y, Tang Q, Huang H, Bi F. 2024. Survival mechanisms of circulating tumor cells and their implications for cancer treatment. Cancer and Metastasis Reviews 43, 941–957. https://doi.org/10.1007/s10555-024-10178-7

Zhu Y, Kekalo K, NDong C, Huang Y, Shubitidze F, Griswold KE, Baker I, Zhang JXJ. 2016. Magnetic-nanoparticle-based immunoassays-on-chip: materials synthesis, surface functionalization, and cancer cell screening. Advanced Functional Materials 26, 3953–3972. https://doi.org/10.1002/adfm.201504176

Related Articles

Genetic characterization of Phytophthora colocasiae isolates causing taro leaf blight (TLB) in the Sudanian climatic zone of Burkina Faso

Cécé Marie Claire, Traoré Renan Ernest, Sogoba Kouka Hamidou, Ouedraogo Nicolas, Int. J. Biosci. 27(3), 76-87, September 2025.

Spatial and tidal profiles of seawater properties, and their relation to coral cover of selected reefs in Iligan City, Lanao Del Norte, Philippines

Angelo A. Responte, Jonalyn B. Galorio, Mary Dorothy Anne Y. Seno, Immanuel N. Galorio, Frence Eliza E. Elecho, Int. J. Biosci. 27(3), 52-61, September 2025.

Reproductive biology of Synodontis membranaceus in the Bagoué River (Ivory Coast)

Ms. Kassoum Kouyaté, Touplé Sibiri Koné, Zéré Marius Gogbe, Valentin N’douba, Int. J. Biosci. 27(3), 42-51, September 2025.

Exploring the mechanism of 5,7-dimethoxy coumarin in the management of insulin resistance- A network pharmacology and experimental approach

John Bosco John Robert, Ravishankar Sarumathi, Chandrasekaran Sankaranarayanan, Int. J. Biosci. 27(3), 30-41, September 2025.

Evaluating the ecophysiological response of marine fungi to textile dye degradation potential

S. Sathya, G. Kanimozhi, A. Panneerselvam, Int. J. Biosci. 27(3), 12-21, September 2025.

Phytochemical analysis and antibacterial activity of Biophytum sensitivum

H. P. Reni Christabel, T. S. Dhanaraj, V. Ramamurthy, Int. J. Biosci. 27(2), 300-305, August 2025.