Climatic changes and fruit trees phenology in the region of Constantine (Algeria)

Paper Details

Research Paper 01/05/2017
Views (244) Download (3)

Climatic changes and fruit trees phenology in the region of Constantine (Algeria)

M. Boulacel, A. Boukeloua, M. Benlaribi
Int. J. Biosci.10( 5), 273-286, May 2017.
Certificate: IJB 2017 [Generate Certificate]


The current study was carried out in Constantine region of north-east Algeria, during four successive campaigns from 2012/2013 to 2015/2016 where climatic changes are recorded by warming or cooling months. The aim of our study is to observe the behavior of 15 fruit trees with climate respect, and to determine the effect of meteorological conditions on the phenological phase of flowering stage and on the yield. Our method was basedon selected field surveys of the flowering periods of the chosen populations and on the comparison of the phonological plant behavior against climatic changes. The obtained results showed that the species can be grouped according to the flowering period which is strongly related to photo-period and thermo-period.The results reveals a flowering precocity of 7.62 and 11.12 days on average marked respectively during the two agricultural years 2013/2014 and 2015/2016 and a double gametophytic phase produced toward the Eriobotrya japonica (Thunb.) Lindl. Early to bloom had adverse effects, especially the yield was completely wiped out as a result of reproductive exposure to spring frost. We concluded that the behavior or response of species to the same climatic changes is different from one year to the next, suggesting an acclimatization supported by a kind of plant memory and thus a genetic mechanism regulating the response to the climatic factors in order to ensure the survival of the species.


Anandhi A, Zion MS, Gowda PH, Pierson DC, Lounsbury D, Frei A. 2013. Past and future changes in frost day indices in the Catskill Mountain region of New York. Hydrological Process 27, 3094- 3104.

Eccel E, Rea R, Caffarra A, Crisci A. 2009. Risk of spring frost to apple production under future climate scenarios: The role of phenological acclimation. International Journal of Biometerology 53, 273-286.

Côme D. 1992. Les végétaux et le froid. Herman, Paris,327-394.

Cook BI, Wolkovich EM, Davies TJ,Ault TR, Betancourt JL, Allen JM, Bolmgren K, Cleland EE, Crimmins TM, Kraft NJB, Lancaster LT, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Pau S, Regetz J, Salamin N, Schwartz MD, Travers SE. 2012. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15, 1283-1294.

Domergue M, Legave JM, Calleja M, Moutier N, Brisson N, Seguin B. 2004. Réchauffement climatique et conséquences sur la floraison (abricotier, pommier, olivier). L’Arboriculture Fruitière 578, 27-33.

Ducreux G. 2002. Introduction à la botanique. Paris, Belin,  187-214 p.

Ge Q, Wang H, Dai J. 2013. Shifts in spring phenophases, frost events and frost risk for woody plants in temperate China. Climate Research 57, 249- 258.

Gordo O, Sanz JJ. 2010. Impact of climate change on plant phenology in Mediter-ranean ecosystems. Global Change Biology 16, 1082- 1106.

Guédon Y, Legave JM. 2008. Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecological Modelling 219, 189-199.

Heller R. 1978. Physiologie végétale, développement. Tome 2,Masson, Paris.164-194.

Legave JM. 2003. Abricotier : les risques d’une floraison plus précoce et plus réduite. Dossier de presse, l’Institut national de la recherche agronomique au Salon international de l’agriculture, 17-18.

Legave JM. 2009. Comment faire face aux changements climatiques en arboriculture fruitière.Innovations Agronomiques 7, 165-177.

McKinney AM, CarraDonna PJ, Inouye DW, Barr B, Bertelsen CD, Waser NM. 2012. Asynchronous changes in phenology of migrating broad-tailed hummingbirds and their early-season nectar resources. Ecology 93, 1987- 1993.

Meyer S, Reed C, Bosdeveix R. 2008. BOTANIQUE, Biologie et physiologie végétales. 2ndEd,MALOINE, Paris, 49- 111.

Morin X, Roy J, Sonie L, Chuine I. 2010. Changes in leaf phenology of three Euro-pean oak species in response to experimental climate change. New Phytologist 186, 900- 910.

Morot-Gaudry JF, Prat R, Bohn-Courseau I, Jullien M, Parcy F, Perrot-Rechenmann C, Reisdorf-Cren M, Richard L, Savouré A. 2012. Biologie végétale croissance et développement. 2ndEd.,Dunod, Paris,161- 186.

Parmesan C, Hanley ME. 2015. Plants and climate change: complexities and surprises. Annals of Botany 116, 849- 864.

Pau S, Wolkovich EM, Cook BI, Davies TJ, Kraft NJB, Bolmgren KJE, Betancourt JL, Cleland EE. 2011. Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology 17, 3633- 3643.

Mu J, Peng Y, Xi X, Wu X, Li G, Niklas KJ, Sun S. 2015. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Annals of Botany 116, 899- 906.

Polgar CA, Primack RB. 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist 191, 926- 941.

Ricard MP. 2014. Vérification de modèles phénologiques durant la dormance des bourgeons de pommier et analyse de l’expression de gènes possiblement reliés à la dormance. Mémoire présenté comme exigence partielle de la maîtrise en biologie, Université of Québec, Montréal, 96.

Wolkovich EM, Davies TJ, Schaefer H, Cleland EE, Cook BI, Travers SE, Willis CG, Davis CC. 2013. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change. American Journal of Botany 100(7), 1407- 1421.

Ziello C, Estrella N, Kostova M, Koch E, Menzel A. 2009. Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Climate Research 39, 227- 234.