Cloning of tomato SUMO1 and development of a CaMV 35S based gene construct for plant transformation

Paper Details

Research Paper 01/11/2016
Views (650) Download (14)
current_issue_feature_image
publication_file

Cloning of tomato SUMO1 and development of a CaMV 35S based gene construct for plant transformation

Saad Imran Malik, Abuzar Abdullah, SamraAzam
Int. J. Biosci.9( 5), 86-96, November 2016.
Certificate: IJB 2016 [Generate Certificate]

Abstract

Tomato (Solanum lycopersicum L.) is one of most important vegetable which is affected by several biotic and abiotic stresses reducing its yield and quality. Stress related proteins may be modified by small ubiquitin-like modifiers (SUMOs) – the process known as SUMOylation, which involves many SUMO proteins and an enzymatic cascade for post-translational modification. SUMOylation is a well-studied process in Arabidopsis but little is known about its roles in crop plants including tomato. This research was aimed to develop aSUMO1 gene overexpression construct under the influence of a CaMV35S promoter. Total RNA was extracted from tomato leaves through Trizol method followed by cDNA synthesis. The SUMO1gene specific primers having BglII and BstEII restriction enzymes sites at 5ʹ ends were used to amplify full-length SUMO1 coding sequence from cDNA via PCR. The fragment was purified and ligated into a TA cloning vector (pGEM-T) followed by sub-cloning in pCAMBIA1301 (a plant transformation vector) from which the native GUS gene was removed. All step-wise confirmations were done by restriction enzyme digestion and colony PCR followed by agarose gel electrophoresis analysis. The resulted plasmid based construct harboring SUMO1 full-length coding sequence was named pCAMBIA: SUMO1. The construct was transformed in Agrobacterium strain LBA4404 through electroporation for subsequent SUMO1 gene transfer in tomato through Agrobacterium-mediated transformation. Thetransgenic plants obtained after transformation will be used for SUMO1 functional studies in tomato regarding biotic/abiotic stress tolerance and disease resistance.

VIEWS 13

Albacete A, Cantero-Navarro E, Grosskinsky DK, Arias CL, Balibrea ME, Bru R, Fragner L, Ghanem ME, de la Cruz Gonzalez M, Hernandez JA. 2015. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. Journal of Experimental Botany 66, 3431-3432.  http://dx.doi.org/10.1093/jxb/erv134

Alexander L, Grierson D. 2009. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany 53, 20-39. http://dx.doi.org/10.1093/jxb/erf072

Augustine RC, York SL, Rytz TC, Vierstra RD. 2016. Defining the SUMO system in Maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiology 171, 2191-2210. http://dx.doi.org/10.1104/pp.16.00353

Azizi P, Rafii MY, Abdullah SN, Hanafi MM, Maziah M, Sahebi M, Ashkani S, Taheri S, Jahromi MF. 2016. Over-Expression of the Pikh gene with a CaMV 35S promoter leads to improved blast disease (Magnaporthe oryzae) tolerance in rice. Frontiers in  Plant Science7, 773-79. http://dx.doi.org/10.3389/fpls.2016.00773

Benfey PN, Chua NH. 1990. The Cauliflower mosaic Virus 35S promoter: Combinatorial regulation of transcription in Plants. Science 250, 959-966. http://dx.doi.org/10.1126/science.250.4983.959 

Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C. 2008. Enrichment of tomato fruit with health promoting anthocyanins by expression of select transcription factors. Nature Biotechnology 26, 1301-1308. http://dx.doi.org/10.3410/f.1138920.596015 

Chaikam V, Karlson DT. 2010. Response and transcriptional regulation of rice SUMOylation system during development and stress conditions. BMB Reports 43, 103-109. http://dx.doi.org/10.5483/bmbrep.2010.43.2.103 

Chetty VJ, Ceballos N, Garcia D, Narvaez-Vasquez J, Lopez W and Orozco-Cardenas ML. 2013. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Reports32, 239-247. http://dx.doi.org/10.1007/s00299-012-1358-1 

Chosed R, Mukherjee S, Lois LM, Orth K. 2006. Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation. Biochemical Journal 398, 521-529. http://dx.doi.org/10.1042/bj20060426

Custers, JBM, Snepvangers SCHJ, Jansen HJ, Zhang L and van Lookeren Campagne MM. 1999. The 35S-CaMV promoter is silent during early embryogenesis but activated during nonembryogenic sporophytic development in microspore culture. Protoplasma 208, 257-264. http://dx.doi.org/10.1007/bf01279097

Duke SO. 2015. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction. Pest Management Science 71, 652-657. http://dx.doi.org/10.1002/ps.3863

Flick K, Kaiser P. 2009. Proteomic revelation: SUMO changes partners when the heat is on. Science Signalling 2, 45 p. http://dx.doi.org/10.1126/scisignal.281pe45

Folta A, Bargsten JW, Bisseling T, Nap JP, Mlynarova L. 2016. Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene. Plant Biotechnol Journal 14, 581-591. http://dx.doi.org/10.1111/pbi.12400

Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. 2009. Genome analysis and genetic enhancement of tomato. Critical Reviews in Biotechnology 29, 152-181. http://dx.doi.org/10.1080/07388550802688870

Hay RT. 2005. SUMO: a history of modification. Molecular Cell 18, 1-12. http://dx.doi.org/10.1007/978-90-481-2649-12

Jan P, Huang H, Chen H. 2010. Expression of a synthesized gene encoding cationic peptide Cecropin B in transgenic tomato plants protects against bacterial diseases. Applied and Environmental Microbiology 76, 769-775. http://dx.doi.org/10.1128/aem.00698-09

Jin JB, Hasegawa PM. 2008. Flowering time regulation by the SUMO E3 ligase SIZ1. Plant Signalling and Behaviour, 3, 891-2. http://dx.doi.org/10.4161/psb.3.10.6513

Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim WY, Van Oosten M, Hyun Y, Somers DE, Lee I, Yun DJ, Bressan RA, Hasegawa PM. 2008. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. PlantJournal 53, 530-540. http://dx.doi.org/10.1111/j.1365-313x.2007.03359.x 

Johnson ES. 2004. Protein modification by SUMO. Annual Review of Biochemistry73, 355-382. http://dx.doi.org/10.1016/s0968-0004(01)01849-7

Jungbauer A. 2010. Transgenic crops and plant biotechnology. Biotechnology Journal 5, 135 p. http://dx.doi.org/10.1002/biot.201000016

Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM. 1991.Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants.Plant Cell, 3, 1187-1193. http://dx.doi.org/10.1105/tpc.3.11.1187

Kurepa JJ, Walker M, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD. 2003. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis: accumulation of SUMO1 and -2 conjugates is increased by stress.Journal of Biological Chemistry 278, 6862-72. http://dx.doi.org/10.1074/jbc.m209694200

Lemaux P. 2008. Genetically Engineered Plants and Foods: A Scientist’s Analysis of the Issues. Annual Review of Plant Biology 59, 771-812. http://dx.doi.org/10.1146/annurev.arplant.58.032806.103840

Li XJ, Guo X, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ. 2016. Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biology 16, 1-12. http://dx.doi.org/10.1186/s12870-016-0715-6

Lois LM, Lima CD, Chua NH. 2003. Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15, 1347-1359. http://dx.doi.org/10.1105/tpc.009902

Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA. 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Science USA 102, 7760-7765. http://dx.doi.org/10.3410/f.1026047.322918

Miura K, Jin JB, Hasegawa PM. 2007. Sumoylation, a post-translational regulatory process in plants. Current Opinion in Plant Biology 10, 495-502. http://dx.doi.org/10.1016/j.pbi.2007.07.002 

Monforte AJ, Diaz A, Cano-Delgado A, van-der-Knaap E, 2014. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany 65, 4625-37. http://dx.doi.org/10.1093/jxb/eru017

Novatchkova M, Budhiraja R, Coupland G, Eisenhaber F, Bachmair A. 2004. SUMO conjugation in plants. Planta 220, 1-8. http://dx.doi.org/10.1007/s00425-004-1370-y

Odell JT, Nagy F, Chua NH. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature313, 810-812. http://dx.doi.org/10.1038/313810a0

Park, SH, Morris JL, Park JE, Hirschi KD, Smith RH. 2003. Efficient and genotype-independent Agrobacterium-mediated tomato transformation. Journal of Plant Physiology 160, 1253-57. http://dx.doi.org/10.1078/0176-1617-01103 

Pulla P. 2016. India nears putting GM mustard on the table. Science,352, 1043 p. http://dx.doi.org/10.1126/science.352.6289.1043

Que Q, Chilton MD, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L. 2010. Trait stacking in transgenic crops: challenges and opportunities. GM Crops,1, 220-229. http://dx.doi.org/10.4161/gmcr.1.4.13439

Sambrook JF, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory Press, New York, USA.

Sharma MK, Solanke AU, Jani D, Singh Y, Sharma AK. 2009. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. Journal of Bioscience 34, 423-433. http://dx.doi.org/10.1007/s12038-009-0049-8

She, XP, Song XG. 2006. Cytokinin and auxin-induced stomatal opening is related to the change of nitric oxide levels in guard cells in broad bean. Plant Physiology 128, 569-579. http://dx.doi.org/10.1111/j.1399-3054.2006.00782.x 

Squires J, Stephens J, Shoelz JE, Palukaitis P. 2007. Assessment of CaMV-mediated gene silencing and integration of CaMV into GM plants with a 35S RNA promoter. Environmental Biosafety Research 6, 259-270. http://dx.doi.org/10.1051/ebr:2007043

Szwacka M, Siedlecka E, Zawirska-Wojtasiak R, Wisniewski L, Malepszy S. 2009. Expression pattern of the pre-prothaumatin II gene under the control of the CaMV 35S promoter in transgenic cucumber (Cucumis sativus L.) flower buds and fruits. Journal of Applied Genetics 50, 9-16. http://dx.doi.org/10.1007/bf03195646

Uluisik, S, Chapman NH, Smith R, et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology 34, 950-952. http://dx.doi.org/10.1038/nbt.3602

van den Burg HA, Kini RK, Schuurink RC, Takken, FL. 2010. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22, 1998-2016. http://dx.doi.org/10.1105/tpc.109.070961

Vannini C, Campa M, Iriti M. 2007. Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Science 173, 231-239. http://dx.doi.org/10.1016/j.plantsci.2007.05.007

Verger A, Perdomo J, and Crossley M. 2003. Modification with SUMO. A role in transcriptional regulation. EMBO Reports 4, 137-142. http://dx.doi.org/10.1007/978-90-481-2649-1.2

Yang WC, Wan J. 2011. Transgenic crops: an option for future agriculture. Journal of Integrative Plant Biology 53, 510-511. http://dx.doi.org/10.1111/j.1744-7909.2011.01064.x 

Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH. 2005. The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta221, 523-530. http://dx.doi.org/10.1007/s00425-004-1466-4

Yu HL, Li YH, Wu KM. 2011. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms. Journal of Integrative Plant Biology 53, 520-538. http://dx.doi.org/10.1111/j.1744-7909.2011.01047.x 

Zhang HX, Blumwald E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology 19, 765-68. http://dx.doi.org/10.3410/f.1001150.16704 

Zhang S, Qi Y, Yang C. 2010. Arabidopsis SUMO E3 ligase AtMMS21 regulates root meristem development. Plant Signalling and Behaviour 5, 53-55. http://dx.doi.org/10.4161/psb.5.1.10158