Comparison of the efficacy of a local and commercial formulation of Bacillus thuringiensis on Spodoptera frugiperda of Maize in Côte D’Ivoire

Paper Details

Research Paper 07/12/2022
Views (513) Download (36)
current_issue_feature_image
publication_file

Comparison of the efficacy of a local and commercial formulation of Bacillus thuringiensis on Spodoptera frugiperda of Maize in Côte D’Ivoire

Achi Stanislas Maurice Akpo, Yapo Atsé Alain, Koffi Eric Kwadjo, Yapo Ossey Bernard, Tyagi Dayal Rajeshwar
J. Bio. Env. Sci.21( 6), 101-111, December 2022.
Certificate: JBES 2022 [Generate Certificate]

Abstract

Spodoptera frugiperda is one of the most important pests of maize, which can cause significant economic losses, up to 4.8 billion dollars. This study aims to evaluate the bioinsecticidal activity of Bacillus thuringiensis var. kurstaki HD-1 on this caterpillar. For this purpose, two formulations based on Btk HD -1 were tested in vitro against L2 and L3 stage larvae of S. frugiperda at different concentrations for seven days. After one to five days of treatments the local formulation induced reduced mobility, cessation of feeding, color change, desiccation and mortality of larvae. However, the commercial formulation was more effective with the 6.5% concentration. It induced 100% mortality in three days of testing on L2 larvae versus five days for the local formulation and four days on L3 larvae. The LC50 obtained with L2 and L3 were 2.14 and 2.29% for the commercial formulation against 5.3 and 5.5% for the local formulation. This local formulation could be an interesting alternative in an integrated strategy for the control of Spodoptera frugiperda in Côte d’Ivoire in maize crops.

VIEWS 51

Abbott WS. 1925. A method for computing the effectiveness of an insecticide. Journal Ecological Entomology 18, 265-267.

Agreste. 2021. La statistique, l’évaluation et la prospective du ministère de l’Agriculture et de la souveraineté alimentaire cnjoncture-synthèses N° 373, 3p.

Aronson AI, Beckman W, Dunn P. 1986. Bacillus thuringiensis and related insect pathogens. Microbial. Rev 50, 1-24.

Baudron F, Zaman-Allah MA, Chaipa I, Chari N, Chinwada P. 2019. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A Case Study in Eastern Zimbabwe. Crop Pro.t 120, 141-150.

Beevers M. 1990. Effects of Bacillus thuringiensis subp. Kurstaki on the insect egg parasitoid, Trichogramma pretiosum. Final Report. Agricultural Research, Inc. 41 p.

Behle RW, MCguire MR, Shasha BS. 1997. Effects of sunlight and simulated rain on residual activity of Bacillus thuringiensis formulations. Journ. Econ. Entomol. 90, 1560-1566.

Boucias DG, Pendland JC. 1999. Bacillus thuringiensis, producer of potent insecticidal toxins. In: Principles of Insect Pathology. The Netherlands: Kluwer Academic Publishers. 217-257.

Deffan KP, Akanvou L, Akanvou R, Nemlin GJ, Kouamé PL. 2015. Évaluation morphologique et nutritionnelle de variétés locales et améliorées de maïs (Zea mays L.) produites en Côte d’Ivoire, Afrique Science 11(3), 181-196.

Devi PSV, Ravinder T, Jaidev C. 2005. Cost-effective effective production of Bacillus thuringiensis by solid-state fermentation, Journal of Invertebrate Pathology 88, 163168.

Devi S. 2018. Fall armyworm threatens food security in southern Africa. Lancet 391-727.

Elouissi. 2016. Contribution à l’étude de la bio écologie des populations de la mineuse de la tomate Tuta absoluta (Lepidoptera, Gelechiidae) en vue de l’optimisation de son contrôle dans la région de Mascara. Université Abdelhamid Ibn Badis de Mostaganem  239 p.

Feldmann F, Rieckmann U, Winter S. 2019. The spread of the fall armyworm Spodoptera frugiperda in Africa-What should be done next. J. Plant Dis. Prot 126, 97-101.

Food and Agricultural Organization of United Nations (FAO). 2018. Integrated management of the fall armyworm on maize a guide for farmer field schools in Africa 118 p.

Hofte H, Whiteley HR. 1989. Insecticidal Crystal Proteins of Bacilllus thuringiensis. Microbiological Reviews 53(2), 242255.

Kandil MA, Abdel-kerim RN, Moustafa MAM. 2020. Lethal and sub-lethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Journal of Biological Pest Control 30(76), 2 7.

Kouakou M, Kobenan KC, Didi RJG, Bini KKN, Ochou OG. 2019. Détection de la Chenille Légionnaire d’automne, Spodoptera frugiperda (J. E. Smith, 1797) (Coleoptera: Noctuidae) et Premières Observations sur sa Biologie en Côte d’Ivoire. European Scientific Journal 15(12), 14 p.

Kumela T, Simiyu J, Sisay B, Likhayo P, Mendesil E, Gohole L, Tefera T. 2018. Farmers’ knowledge, Perceptions and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int.  J. Pest Manag.

Lotfy MN. 1988. Pathogenesis of Bacillus spaericus as an entomopathogenic bacterium on certain mosquito species in Egypt. Ph. D. Thesis, Fac. Sci., Ain Shams Univ., Egypt.

Mawussi G. 2008. Bilan environnemental de l’utilisation de pesticides organochlorés dans les cultures de coton, café et cacao au Togo et recherche d’alternatives par l’évaluation du pouvoir insecticide d’extraits de plantes locales contre le scolyte du café (Hypothenemus hampei Ferrari). Thèse de doctorat, Université de Toulouse, France 154 p.

Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, PaulaMoraes SV, Peterson JA, Hunt TE. 2018. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology 26, 286300.

Pandey S, Bishwambhar DJ, Lakshmi DT. 2009. Relative efficacy of two subspecies of Bacillus thuringiensis, available as commercial preparations in market, on different stages of a Lepidopteran pest, Spodoptera litura (Fabricius), Archives of Phytopathology and Plant Protection 42(10), 903914.

Polanczyk RA, Pires RF, Silva D, Fiuza LM. 2000. Effectiveness of Bacillus thuringiensis strains against Spodoptera frugiperda (Lepidoptera: Noctuidae). Brazilian Journal of Microbiology 31, 165167.

Prasanna BM, Huesing EF, Eddy R, Virginia M, Peschke MV. 2018. Fall Armyworm in Africa: a guide for integrated pest management, 1st edition. Mexico, CDMX, CIMMY. 120 p.

Pruett CJH, Burges HD, Wyborn CH. 1980. Effect of exposure to soil on potency and spore viability of Bacillus thuringiensis. J Invertebrate Pathol 35, 168174.

Randhawa MA. 2009. Calculation of LD50 values from the method of Miller and Tainter, 1944. Journal of Ayub Medical College Abbottabad 21(3), 84-85.

Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62(3), 775806.

Sneh B, Schuster S, Broza M. 1981. Insecticidal activity of Bacillus thuringiensis strains against the egyptian cotton leaf worm spodoptera littoralis (Lep.: Noctuidae). Entomophaga 26(2), 179190.

Srinivasan R, Krishnayya PV, Krishnamurthy KVM, Arjuna Rao P. 2001. Effect of growth media on the bioefficacy of Bacillus thuringiensis Berliner, against Spodoptera litura (Fabricius). Pesticide Res. J. 13, 135 -140.

Todorova S, Kozhuharova L. 2010. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World Journal of Microbiology and Biotechnology, Razgrad 26(7), 1207-1216.

Togola A, Meseka S, Menkir A, Badu-Apraku B, Bouka O, Tamò M, Djouaka R. 2018. Measurement of Pesticide Residues from Chemical Control of the Invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a Maize Experimental Field in Mokwa, Nigeria. Int. J. Environ. Res. Public Health (15), 849.

Valicente FH, MourãoAndré HC. 2008. Use of By-Products Rich in Carbon and Nitrogen as a Nutrient Source to Produce Bacillus thuringiensis (Berliner)-Based Biopesticide. Neotropical Entomology 37(6), 702708.