Welcome to International Network for Natural Sciences | INNSpub

Corn starch industry wastewater pollution and treatment processes- A review

Review Paper | March 1, 2018

| Download 34

Neogi Shubhaneel, Dey Apurba, Chaterjee Pradip Kumar

Key Words:

J. Bio. Env. Sci.12( 3), 283-293, March 2018


JBES 2018 [Generate Certificate]


Corn starch industry contributes almost 12% of starch production. Maize starch, produced worldwide, contributes huge amount of acidic effluent (pH 3-5) containing high Chemical oxygen demand (COD) (10000-30000 mg/L), biological oxygen demand (BOD) (4000-8000 mg/L), nitrogenous pollutant (400-900 mg/L) and other pollutants. Conventional methods of anaerobic digestion and nitrification-denitrification process are widely being used to treat starch industry effluent. The anaerobic digestion requires neutral pH operation thus increases operational cost. Similarly, nitrification and denitrification processes are lengthy processes consuming high operational cost and require secondary treatment for generated excess sludge. Several technologies like low pH methanogenesis, anaerobic ammonium oxidation, and sludge pyrolysis are the newer concept found to be very promising. But it still require evaluation for effective removal of waste from corn starch industry effluent; as well as a matter of extensive research itself because of the non-confirmative bacterial characteristic, occurrence, growth factor, culture and isolation possibilities, which are still to be explored. This paper reviews the newer possibilities to treat effluent under low pH and possibilities for effective anaerobic removal of nitrogenous pollutants and incorporation on zero discharge close loop technology in corn starch wastewater treatment.


Copyright © 2018
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Corn starch industry wastewater pollution and treatment processes- A review

Abeynayaka A, Visvanathan C. 2011. Mesophilic and thermophilic aerobic batch biodegradation, utilization of carbon and nitrogen sources in high-strength wastewater. Bioresour. Technol 102, 2358–2366. https://doi.org/10.1016/j.biortech.2010.10.096

Ali M, Chai LY, Tang CJ, Zheng P, Min XB, Yang Z.H, Xiong L, Song YX, 2013. The increasing interest of ANAMMOX research in China: Bacteria, process development, and application. Biomed Res. Int. 2013. https://doi.org/ 10.1155/2013/134914

Backman O, Hulth S. 2013. Character and function of anammox bacteria under environmental stress. Dep. Chem. Mol. Biol. Doctor of 60.

Bagchi S, Biswas R, Vlaeminck SE, Roychoudhury K, Nandy T. 2012. Stable performance of non-aerated two-stage partial nitritation/anammox (PANAM) with minimal process control. Microb. Biotechnol. 5, 425–432. https://doi.org/10.1111/j.1751-7915.2012.00336.x

Bhadra A, Mukhopadhyay SN, Ghose TK, 1984. A kinetic model for methanogenesis of acetic acid in a multireactor system. Biotechnol. Bioeng 26, 257–64. https://doi.org/10.1002/bit.260260310

Bitton G. 2010. Wastewater Microbiology: Fourth Edition, Wastewater Microbiology: Fourth Edition. https://doi.org/10.1002/9780470901243

Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH, 2006. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192–194. https://doi.org/10.1038/ nature04810

Bronk DA, Roberts QN, Sanderson MP, Canuel EA, Hatcher PG, Mesfioui R, Filippino KC, Mulholland MR, Love NG. 2010. Effluent organic nitrogen (EON): Bioavailability and photochemical and salinity-mediated release. Environ. Sci. Technol 44, 5830–5835. https://doi.org/10.1021/es101115g

Cancino-Madariaga B, Aguirre J. 2011. Combination treatment of corn starch wastewater by sedimentation, microfiltration and reverse osmosis. Desalination 279, 285–290. https://doi.org/10.1016/ j.desal.2011.06.021

Cerquiglini C, Claro J, Giusti AM, Karumathy G, Mancini D, Marocco E, Mascianá P, Michetti M, Milo M. 2016. Food Outlook June 2016. Food Agric. Organ. United Nations 14.

Chan YJ, Chong MF, Law CL, Hassell DG, 2009. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155, 1–18. https://doi.org/10.1016/j.cej.2009.06.041

Chavalparit O, Ongwandee M. 2009. Clean technology for the tapioca starch industry in Thailand. J. Clean. Prod. 17, 105–110. https://doi.org/10.1016/ j.jclepro.2008.03.001

Chen D, Yin L, Wang H, He P. 2015. Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Manag. https://doi.org/10.1016/ j.wasman.2015.01.022

Chen Z, Hu M, Cui B, Liu S, Guo D, Xiao B. 2016. The effect of bioleaching on sewage sludge pyrolysis. Waste Manag 48, 383–388. https://doi.org/10.1016/j.wasman.2015.10.002

Chiu YC, Chung MS. 2003. Determination of optimal COD/nitrate ratio for biological denitrification. Int. Biodeterior. Biodegrad 51, 43–49. https://doi.org/10.1016/S0964-8305(02)00074-4

Dubey S. 2006. Study of Wastes and Effluents Treatment in Starch and Allied Industries. Sci. Technol 3, 69–77.

Duval B, Goodwin S. 2000. Methane production and release from two New England peatlands. Int Microbiol 3, 89–95.

Fonts I, Gea G, Azuara M, Ábrego J, Arauzo J, 2012. Sewage sludge pyrolysis for liquid production: A review. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2012.02.070

Gavrilescu M. 2010. Environmental Biotechnology : Achievements , Opportunities and Challenges. Dyn. Biochem. Process Biotechnol. Mol. Biol 4, 1–36.

Groffman PM, Davidson EA, Seitzinger S, 2009. New approaches to modeling denitrification. Biogeochemistry 93, 1–5. https://doi.org/10.1007/ s10533-009-9285-0

Haandel AV and LJV. 2007. 8.3.1 Theory of anaerobic digestion. Handb. Biol. Wastewater Treat – Des. Optim. Act. Sludge Syst 377–380.

Hannides CC. 2014. Migrant solution to the anammox mystery. Proc. Natl. Acad. Sci 111, 15604–15605. https://doi.org/10.1073/pnas.1418296111

Herrmann M, Scheibe A, Avrahami S, Küsel K. 2011. Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosystems. Appl. Environ. Microbiol 77, 1896–1899. https://doi.org/ 10.1128/AEM.02879-10

Huiliñir C, Aspé E, Roeckel M. 2011. Modeling of the denitrification/anaerobic digestion process of salmon fishery wastewater in a biofilm tubular reactor. J. Environ. Manage 92, 1591–1608. https://doi.org/10.1016/j.jenvman.2011.01.015

Jackson DS, Shandera DL. 1995. Corn wet milling: separation chemistry and technology. Adv. Food Nutr. Res 38, 271–300.

Jain SR, Mattiasson B. 1998. Acclimatization of methanogenic consortia for low pH biomethanation process. Biotechnol. Lett 20, 771–775. https://doi.org/10.1023/B:BILE.0000015920.45724.29

Jetten MSM, Niftrik LV, Strous M, Kartal B, Keltjens JT, Op Den Camp HJM. 2009. Biochemistry and molecular biology of anammox bacteria biochemistry and molecular biology of anammox bacteria M.S.M. Jetten et al. Crit. Rev. Biochem. Mol. Biol 44, 65–84. https://doi.org/ 10.1080/10409230902722783

Jetten MSM, Wagner M, Fuerst J, Van Loosdrecht M, Kuenen G, Strous M. 2001. Microbiology and application of the anaerobic ammonium oxidation (’anammox’) process. Curr. Opin. Biotechnol 12, 283–288. https://doi.org/ 10.1016/S0958-1669(00)00211-1

Kartal B, Kuenen JG, van Loosdrecht MCM. 2010. Sewage Treatment with Anammox. Science (80-) 328, 702–703. https://doi.org/10.1126/science.1185941

Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN, Timmis KN, Conrad R. 2007. Shift from acetoclastic to H-2-dependent methanogenes is in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobactetium strain. Appl. Environ. Microbiol 73, 2344–2348. https://doi.org/10.1128/aem.02413-06

Kuenen JG. 2008. Anammox bacteria: from discovery to application. Nat. Rev. Microbiol 6, 320–326. https://doi.org/10.1038/nrmicro1857

Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. 2014. Full-scale partial nitritation/anammox experiences – An application survey. Water Res 55, 292–303. https://doi.org/10.1016/j.watres.2014.02.032

Lu H, Chandran K, Stensel D. 2014. Microbial ecology of denitrification in biological wastewater treatment. Water Res. https://doi.org/10.1016/ j.watres.2014.06.042

Maestrojuan GM, Boone DR. 1991. Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol 41, 267–274. https://doi.org/10.1099/00207713-41-2-267

Neogi S, Dey A, Chaterjee PK. 2016. Microflora from leaf debris is suitable for treatment of starch industry wastewater. Eng. Life Sci 16, 683–689. https://doi.org/10.1002/elsc.201500086

Ni SQ, Zhang J. 2013. Anaerobic ammonium oxidation: From laboratory to full-scale application. Biomed Res. Int. 2013. https://doi.org/10.1155/ 2013/469360

Padoley KV, Mudliar SN, Pandey RA. 2008. Heterocyclic nitrogenous pollutants in the environment and their treatment options – An overview. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2007.01.047

Patel GB, Sprott GD, Ekiel I. 1993. Production of specifically labeled compounds by Methanobacterium espanolae grown on H2-CO2 plus [13C] acetate. Appl. Environ. Microbiol 59, 1099–1103.

Ran Z, Gefu Z, Kumar JA, Chaoxiang L, Xu H, Lin L. 2014. Hydrogen and methane production in a bio-electrochemical system assisted anaerobic baffled reactor, in: International Journal of Hydrogen Energy pp. 13498–13504. https://doi.org/10.1016/ j.ijhydene. 2014.02.086

Savant DV, Shouche YS, Prakash S, Ranade DR. 2002. Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int. J. Syst. Evol. Microbiol 52, 1081–1087. https://doi.org/10.1099/ijs.0.01903-0

Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Bock E, Kuenen JG, Jetten MSM. 2002. Aerobic and anaerobic ammonia oxidizing bacteria – Competitors or natural partners? FEMS Microbiol. Ecol. https://doi.org/10.1016/S0168-6496(01)00208-2

Seghezzo L, Zeeman G, Van Lier JB, Hamelers HVM, Lettinga G. 1998. A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour. Technol. https://doi.org/10.1016/S0960-8524(98)00046-7

Sklyar V, Epov A, Gladchenko M, Danilovich D, Kalyuzhnyi S. 2003. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater. Appl. Biochem. Biotechnol 109, 253–262. https://doi.org/10.1385/ABAB:109:1-3:253

Strous M, Van Gerven E, Kuenen JG, Jetten M. 1997. Effects of aerobic and microaerobic conditions on anaerobic ammonium- oxidizing (anammox) sludge. Appl. Environ. Microbiol 63, 2446–2448.

Van de Graaf AA, Mulder A, De Bruijn P, Jetten MSM, Robertson LA, Kuenen JG. 1995. Anaerobic oxidation of ammoinium is a biologically mediated process. Appl. Environ. Microbiol 61, 1246–1251. https://doi.org/PMC167380

Wang J, Mahmood Q, Qiu JP, Li YS, Chang YS, Chi LN, Li XD. 2015. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent. Biomed Res. Int. 2015. https://doi.org/ 10.1155/2015/617861

Williams RT, Crawford RL. 1985. Methanogenic bacteria, including an Acid-tolerant strain, from peatlands. Appl. Environ. Microbiol 50, 1542–1544. 

Williams RT, Crawford RL. 1984. Methane production in Minnesota peatlands. Appl. Environ. Microbiol 47, 1266–1271.

Xiong L, Wang YY, Tang CJ, Chai LY, Xu KQ, Song YX, Ali M, Zheng P. 2013. Start-up characteristics of a granule-based anammox UASB reactor seeded with anaerobic granular sludge. Biomed Res. Int. 2013. https://doi.org/10.1155/ 2013/396487

Yang X, Wang S, Zhou L. 2012. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresour. Technol 104, 65–72. https://doi.org/ 10.1016/j.biortech.2011.10.026

Zhang L, Zheng P, Tang C, Jin R. 2008. Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters. J. Zhejiang Univ. Sci B 9, 416–426. https://doi.org/10.1631/jzus.B0710590

Zhang Z, Liu S. 2014. Hot topics and application trends of the anammox biotechnology: a review by bibliometric analysis. Springerplus 3, 220. https://doi. org/10.1186/2193-1801-3-220