Welcome to International Network for Natural Sciences | INNSpub

Decolorization of mono azo dye methyl orange with Epilithon biofilm: effects of physico-chemical parameters

Research Paper | September 1, 2016

| Download 2

Sadaf Shabbir, Muhammad Faheem, Philip G. Kerr, Naeem Ali, Yonghong Wu

Key Words:

Int. J. Biosci.9( 3), 12-22, September 2016

DOI: http://dx.doi.org/10.12692/ijb/9.3.12-22


IJB 2016 [Generate Certificate]


Azo dyes are one of the most widely used class of dyes in different industries. These dyes are generally recalcitrant under natural aquatic and conventional wastewater treatment systems. The study is innovative in demonstrating the role of aquatic biofilm, epilithon, in removal of an azo dye, methyl orange, under varying environmental conditions in a laboratory set up. Epilithon biofilm was collected by peeling it from the surface of submerged rocks in Xuan Wu Lake, Nanjing, China. The biofilm was immobilized on the surface of specific bio-carriers (AAM carriers). The attached biofilms showed 50->99.9% removal of dye at a concentration of 25-500 mg L-1 in 24-172 hrs. A maximum dye removal rate was observed at pH 7 using 0.8 mg L-1 biomass under mesophilic temperature (30 ˚C).


Copyright © 2016
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Decolorization of mono azo dye methyl orange with Epilithon biofilm: effects of physico-chemical parameters

Alqaragully MB. 2014. Removal of textile dyes (maxilon blue, and methyl orange) by date stones activated carbon. International Journal of Advanced Research in Chemical Science 1(1), 48-59.

APHA 2005. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.

Aracagök YD, Cİhangİr N. 2013. Decolorization of reactive black 5 by Yarrowia lipolytica NBRC 1658. American Journal of Microbiological Research 1(2), 16-20. http://dx.doi.org/10.12691/ajmr-1-2-1

Azim M, Asaeda T, Verdegem M, van Dam A, Beveridge M. 2005. Periphyton structure, diversity and colonization. Periphyton: ecology, exploitation and management, 15-33.

Cejudo E, Schiff SL, Aravena RO. 2014. Epilithon isotope composition as an environmental archive in rivers receiving wastewater: the case of the Grand River, Ontario, Canada. Revue des sciences de l’eau/Journal of Water Science 27(3), 219-213. http://dx.doi.org/10.7202/1027807ar

Chen SH, Ting ASY. 2015. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. Journal of environmental management 150, 274-280. http://dx.doi.org/10.1016/j.jenvman.2014.09.014

Chen Z-x, Jin X-y, Chen Z, Megharaj M, Naidu R. 2011. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 363(2), 601-607. http://dx.doi.org/10.1016/j.jcis.2011.07.057

Cheng Y, Lin H, Chen Z, Megharaj M, Naidu R. 2012. Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads. Ecotoxicology and Environmental safety, 83, 108-114. http://dx.doi.org/10.1016/j.ecoenv.2012.06.017

Dan DY, Wijannarong S, Aroonsrimorakot S, Thavipoke P, Kumsopa c, Sangjan S. 2013. 4th International Conference on Environmental Science and Development- ICESD 2013Removal of Reactive Dyes from Textile Dyeing Industrial Effluent by Ozonation Process. APCBEE Procedia 5, 279-282.

Du B, Haddad SP, Scot WC, Chambliss CK, Brooks BW. 2015. Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought. Chemosphere, 119, 927-934. http://dx.doi.org/10.1016/j.chemosphere.2014.08.044

El-Ashtoukhy ESZ, Amin NK. 2010. Removal of acid green dye 50 from wastewater by anodic oxidation and electrocoagulation—A comparative study. Journal of Hazardous Materials 179(1–3), 113-119. http://dx.doi.org/10.1016/j.jhazmat.2010.02.066

El-Desoky HS, Ghoneim MM, Zidan NM. 2010. Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination 264(1), 143-150. http://dx.doi.org/10.1016/j.desal.2010.07.018

Ezechi EH, Kutty SRbM, Malakahmad A, Isa MH. 2015. Characterization and optimization of effluent dye removal using a new low cost adsorbent: Equilibrium, kinetics and thermodynamic study. Process Safety and Environmental Protection 98, 16-32. http://dx.doi.org/10.1016/j.psep.2015.06.006

Fu Y, Viraraghavan T. 2001. Fungal decolorization of dye wastewaters: a review. Bioresource technology, 79(3), 251-262. http://dx.doi.org/10.1016/S0960-8524(01)00028-1

Gupta V. 2009. Application of low-cost adsorbents for dye removal–A review. Journal of environmental management 90(8), 2313-2342. http://dx.doi.org/10.1016/j.jenvman.2008.11.017

Han L, Xue S, Zhao S, Yan J, Qian L, Chen M. 2015. Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions. PLoS ONE, 10(7), e0132067. http://dx.doi.org/10.1371/journal.pone.0132067

Hillebrand H, Sommer U. 2000. Diversity of benthic microalgae in response to colonization time and eutrophication. Aquatic Botany 67(3), 221-236. http://dx.doi.org/10.1016/S0304-3770(00)00088-7

Liehr SK, Rubin AR, Tonning B. 2004. Natural treatment and onsite processes. Water Environment Research 76(6), 1191-1237. http://dx.doi.org/10.2175/106143004X142059

Lu H. Yang L, Shabbir S, Wu Y. 2014a. The adsorption process during inorganic phosphorus removal by cultured periphyton. Environmental Science and Pollution Research 21(14), 8782-8791. http://dx.doi.org/10.1007/s11356-014-2813-z

Lu H, Yang L, Zhang S, Wu Y. 2014b. The Behavior of Organic Phosphorus under Non-Point Source Wastewater in the Presence of Phototrophic Periphyton. PLoS ONE 9(1), e85910. http://dx.doi.org/10.1371/journal.pone.0085910

Mahvi AH, Ghanbarian M, Nasseri S, Khairi A. 2009. Mineralization and discoloration of textile wastewater by TiO2 nanoparticles. Desalination, 239(1), 309-316. http://dx.doi.org/10.1016/j.desal.2008.04.002

Mitta A, Malviya A, Kaur D, Mittal J, Kurup L. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials 148(1), 229-240. http://dx.doi.org/10.1016/j.jhazmat.2007.02.028

Mnif I, Maktouf S, Fendri R, Kriaa M, Ellouze S, Ghribi D. 2016. Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition. Environmental Science and Pollution Research 23(2), 1742-1754. http://dx.doi.org/10.1007/s11356-015-5294-9

Parshetti G, Telke A, Kalyani D, Govindwar S. 2010. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. Journal of Hazardous Materials 176(1), 503-509. http://dx.doi.org/10.1016/j.jhazmat.2009.11.058

Sabater S, Gregory SV, Sedell JR. 1998. Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream. Journal of Phycology 34(4), 561-567. http://dx.doi.org/10.1046/j.15298817.1998.340561.x

Saratale G, Kalme S, Govindwar S. 2006. Decolorization of textile dyes by Aspergillus ochraceus (NCIM-1146). Indian journal of biotechnology 5(3), 407-410.

Seyis I, Subasioglu T. 2008. Comparison of live and dead biomass of fungi on decolorization of methyl orange. African Journal of Biotechnology, 7(12).

Shah MP, Patel KA, Nair SS, Darji A. 2013. Microbial Decolorization of Methyl Orange Dye by Pseudomonas spp. ETL-M. International Journal of Environmental Bioremediation & Biodegradation, 1(2), 54-59. http://dx.doi.org/10.12691/ijebb-1-2-4

Shin M, Nguyen T, Ramsay J. 2002. Evaluatin of support materials for the surface immobilization and decolorization of Amaranth by Trametes versicolor. Applied Microbiology and Biotechnology 1, 218-223. http://dx.doi.org/10.1007/s00253-002-1088-3

Sohrabi MR, Khavaran A, Shariati S, Shariati S. 2014. Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry. (http://dx.doi.org/10.1016/j.arabjc.2014.02.019)

Thao TP, Kao H-C, Juang R-S, Lan JC-W. 2013. Kinetic characteristics of biodegradation of methyl orange by Pseudomonas putida mt2 in suspended and immobilized cell systems. Journal of the Taiwan Institute of Chemical Engineers, 44(5), 780-785. http://dx.doi.org/10.1016/j.jtice.2013.01.015

Tlili A, Montuelle B, Bérard A, Bouchez A. 2011. Impact of chronic and acute pesticide exposures on periphyton communities. Science of the Total Environment 409(11), 2102-2113. http://dx.doi.org/10.1016/j.scitotenv.2011.01.056

Vieira AP, Santana SAA, Bezerra CWB, Silva HAS, Chaves JAP, Melo JCP, Filho ECS, Airoldi C. 2011. Removal of textile dyes from aqueous solution by babassu coconut epicarp (Orbignya speciosa). Chemical Engineering Journal, 173(2), 334-340. http://dx.doi.org/10.1016/j.cej.2011.07.043

Villeneuve A, Montuelle B, Bouchez A. 2010. Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquatic Sciences 72(1), 33-44. http://dx.doi.org/10.1007/s00027-009-0108-0

Yagub MT, Sen TK, Afroze S, Ang HM. 2014. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science 209, 172-184. http://dx.doi.org/10.1016/j.cis.2014.04.002

Yagub MT, Sen TK, Ang HM. 2012. Equilibrium, Kinetics, and Thermodynamics of Methylene Blue Adsorption by Pine Tree Leaves. Water, Air, & Soil Pollution, 223(8), 5267-5282. http://dx.doi.org/10.1007/s11270-012-1277-3