Welcome to International Network for Natural Sciences | INNSpub

Detection and molecular characterization of Metallo beta-lactamases producing Pseudomonas aeruginosa isolated from burn patients

Research Paper | March 1, 2020

| Download 8

Abdullah Zafar, Nishat Zafar, Rabia Kanwar, Fariha Mazhar, Maria Shaukat, Muhammad Sarwar, Andleeb Afzal

Key Words:

Int. J. Biosci.16( 3), 441-450, March 2020

DOI: http://dx.doi.org/10.12692/ijb/16.3.441-450


IJB 2020 [Generate Certificate]


Due to drug resistance, P. aeruginosa becomes more contagious that able to cause more severe infection. Those patients with acute burn existing an immunosuppressive situation and, therefore, advanced defenselessness to diseases through nosocomial pathogens along with high mortality. The purpose of the research was isolation and identification of P. aeruginosa from burn samples and determined its antibiotic sensitivity pattern and then molecular identification of MBL genes using PCR. A total of 200 clinical samples were collected from burn patients of Allied Hospital Faisalabad. P. aeruginosa was isolated on cetrimide agar, and identification was made by gram staining and biochemical tests. All isolates checked the antibiotic sensitivity pattern. Phenotypic screening of Metallo Beta Lactamases (MBL) producing P. aeruginosa and genotypic detection of MBL genes were determined. Out of 200 samples, 46.5% were positive. All isolates exhibited high resistance against multiple antibiotics except colistin, polymyxin, and aztreonam. All of 7 strains were detected PCR positive for the OprL gene using specific primers. 35.48% isolates have shown MBLs production in the combined disk diffusion method. Phenotypically detected ten isolates positive for MBLs encoded genes as followed by blaNDM 5(50%) blaVIM 3(30%) blaIMP 2(20%) and blaSIM, blaDIM, blaSPM, blaGIM, and blaAIM were not detected. MBLs producing isolates such as Pseudomonas aeruginosa are a distressing threat in health care institutes and can be control through proper following the isolation and strict detection methods that will really helpfully in reduce serious infections and death rate among the hospitalized patients.


Copyright © 2020
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Detection and molecular characterization of Metallo beta-lactamases producing Pseudomonas aeruginosa isolated from burn patients

Ali Z, Mumtaz N, Naz SA, Jabeen N, Shafique M. 2015. Multi-drug resistant Pseudomonas aeruginosa: a threat of nosocomial infections in tertiary care hospitals. Journal of Pakistan Medical Association 65(12).

Beige F, Salehi MB, Bahador N, Mobasherzadeh S. 2015. Plasmid mediated antibiotic resistance in isolated bacteria from burned patients. Jundishapur Journal of Microbiology 8(1), e13567. http://dx.doi.org10.5812/jjm.135.67

Chomczynski P, Sacchi N. 2006.The single-step method of RNA isolation by acidguanidiniumthiocyanate–phenol–chloroform extraction: twenty-something years on. Nature Protocols 1(2), 581-585. http://dx.doi.org/10.1038/nprot.2006.83

Church D, Elsayed S, Reid O, Winston B, Lindsay R. 2006. Burn wound infections. Clinical Microbiology Review 19(2), 403-434. http://dx.doi.org/10.1128/CMR.19.2.403-434.2006

Doyle JS, Buising KL, Thursky KA, Worth LJ, Richards MJ. 2011. Epidemiology of infections acquired in intensive care units. In Seminars in respiratory and critical care medicine. Thieme Medical Publishers 32(2), p 115-138. http://dx.doi.org/10.1055/s-0031-1275525

Eriksen HM, Iversen BG, Aavitsland P. 2005. Prevalence of nosocomial infection sin hospitals in Norway, 2002 and 2003. Journal of Hospital Infection 60(1), 40-45. http://dx.doi.org/10.1016/j.jhin.2004.09.038

Fallah F, Borhan RS, Hashemi A. 2013. Detection of bla (IMP) and bla (VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. International Journal of burns and Trauma, 3(2), 2013. 122.

Haque R, Salam MA. 2010. Detection of ESBL producing nosocomial gram negative bacteria from a tertiary care hospital in Bangladesh. Pakistan Journal of Medical Science 26(4), 887-891.

Jensen LB, Baloda S, Boye M, Aarestrup FM. 2001. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil. Environmental International 26(7-8), 2001. 581-587. http://dx.doi.org/10.1016/S0160-4120(01)00045-9

Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J. 2012. Phenotypic detection Ofmetallo-β-lactamase in imipenem-resistant Pseudomonas aeruginosa. The Scientific World Journal, http://dx.doi.org/10.1100/2012/654939

Kaushik R, Kumar S, Sharma R, Lal P. 2001. Bacteriology of burn wounds—the firstthree years in a new burn unit at the Medical College Chandigarh. Burns 27(6), 595-597. https://doi.org/10.1016/S0305-4179(01)00023-7

Kamaria Pooja, Aring Binita, Sinha Mala. 2016. Incidence of Multidrug Resistant Pseudomonas aeruginosa isolated from Burn patients tertiary care hospital, Jamnagar, Gujarat, India. IOSR Journal of Dental and Medical Sciences 15, 2016. 31-34. http://dx.doi.org/10.9790/0853-150773134.

Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinicalimpact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Review 22(4), 582-610. http://dx.doi.org/10.1128/CMR.00040-09

Livermore DM. 2001. of Pseudomonas, porins, pumps and carbapenems. Journal of Antimicrobial and Chemotherapy. 47(3), 247-250. http://dx.doi.org/10.1093/jac/47.3.247

Matthijs S, Coorevits A, Gebrekidan TT, Tricot C, Vander Wauven C, Pirnay JP, Cornelis P. 2013. Evaluation of oprI and oprL genes as molecular markers for the genus Pseudomonas and their use in studying the biodiversity of a small Belgian River. Research in Microbiology. 164(3), 2013. 254-261. http://dx.doi.org/10.1016/j.resmic.2012.12.0.01

Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Tulkens PM. 2007. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clinical Microbiology and Infections 13(6), 560-578. http://dx.doi.org/10.1111/j.1469-0691.2007.016.81.x

Nanvazadeh F, Khosravi AD, Zolfaghari MR, Parhizgari N. 2013. Genotyping of Pseudomonas aeruginosa strains isolated from burn patients by RAPD-PCR. Burns, 39(7), 1409-1413. http://dx.doi.org/10.1016/j.burns.2013.03.008

Owlia P, Saderi H, Karimi Z, Rad A, Bagher SM, Bahar MA. 2008. Phenotypic detection of Metallo-beta-Lactamase producing Pseudomonas aeruginosa strains isolated from burned patients. Iranian Journal of Pathology 3(1), 20-25.

Pollini S, Maradei S, Pecile P, Olivo G, Luzzaro F, Docquier JD, Rossolini GM, FIM. 2013. Anew acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrobial Agents and Chemotherapy 57(1), 2013. 410-416. http://dx.doi.org/10.1128/AAC.01953-12

Picao RC, Andrade SS, Nicoletti AG, Campana EH, Moraes GC, Mendes RE, Gales AC. 2008. Metallo-β-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. Journal of Clinical Microbiology 46(6), 2008. 2028-2037. http://dx.doi.org/10.1128/JCM.00818-07

Peshattiwar PD, Peerapur BV. 2011. ESBL and MBL Mediated Resistance in Pseudomonasaeruginosa; an Emerging Threat to Clinical Therapeutics. Journal of Clinics and Diagnostic Research 5(8), 2011. 1552-1554.

Poirel L, Walsh TR, Cuvillier V, Nordmann P. 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and InfectiousDiseases 70(1), 2011. 119-123. https://doi.org/10.1016/j.diagmicrobio.2010.12.0.02

Ramakrishnan K, Rajagopalan S, Nair S, Kenchappa P, Chandrakesan SD. 2014. Molecular characterization of metallo β-lactamase producing multidrug resistant Pseudomonas aeruginosa from various clinical samples. Indian Journal of Pathology and Microbiology 57(4), 2014. 579. http://dx.doi.org/10.4103/0377-4929.142670030

Shanthi M, Sekar U, Kamalanathan A, Sekar B. 2014. Detection of New Delhi Metallo beta lactamase-1 (NDM-1) carbapenemase in Pseudomonas aeruginosa in a single centre in southern India.Indian Journal of Medical Research. 140(4), 546.

Saaiq M, Ahmad S, Zaib MS. 2015. Burn wound infections and antibiotic susceptibility patterns atPakistan Institute of Medical Sciences, Islamabad, Pakistan. World Journal of Plastic Surgery 4(1), 9.

Walsh TR, Toleman MA, Poirel L, Nordmann P. 2005. Metallo-β-lactamases: the quiet before thestorm?. Clinical Microbiology Review 18(2), 306-325. http://dx.doi.org/10.1128/CMR.18.2.306325.2005

Wróblewska M. 2006. Novel therapies of multidrug-resistant Pseudomonas aeruginosa & Acinetobacter spp. infections: the state of the art. Archivum Immunologiae et Therapiae Expermentalis. 54(2), 113-120. http://dx.doi.org/10.1007/s00005-006-0012-4

Yong D, Toleman MA, Bell J, Ritchie B, Pratt R, Ryley H, Walsh TR. 2012. Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrobial Agents and Chemotherapy 56(12), 6154-6159. http://dx.doi.org/10.1128/AAC.05654-11

Zubair KO, Iregbu KC. 2018. Resistance pattern and detection of Metallo‑beta‑lactamase genes inclinical isolates of Pseudomonas aeruginosa in a central Nigeria Tertiary Hospital. Nigerian Journal of Clinical practice. 21(2), 2018.176-182.