Determination of insecticidal resistance in Culex mosquitoes against temephos, cypermethrin and deltamethrin

Paper Details

Research Paper 01/02/2019
Views (704)
current_issue_feature_image
publication_file

Determination of insecticidal resistance in Culex mosquitoes against temephos, cypermethrin and deltamethrin

Sadia Abbas, Shabab Nasir, Muhammad Kashif Zahoor, Muhammad Asrar
Int. J. Biosci. 14(2), 18-23, February 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Pakistan is an agricultural country, so farmers use huge amount of insecticides without discrimination to save their crops. In the mean while they also use those pesticides in their homes for the control of house hold pests. So, this study was carried out to know the status of resistance of temephos and pyrethroids in mosquitoes. For this purpose, mosquitoes were collected, identified and reared in laboratory for bioassay. Larvae were treated in beakers while adults with impregnated papers. In case of temephos, LC50 values from 0.009 to 0.327 ppm were noted  and highest value was found from Lahore mosquitoes that were about 34 fold resistant than susceptible strain. In case of adulticides, cypermethrin showed up to 17.67 fold variation in susceptibility level across all populations while deltamethrin showed up to 33.88 fold variation. The results showed that Lahore mosquitoes were more resistant followed by Rawalpindi and least in case of Faisalabad. Higher level of activity in case of different enzymes like esterase, mixed-function oxidase, glutathione S-transferase and acetyl-cholinesterase were found in resistant populations as compared to susceptible strain. We should use selective chemicals with new mode of action to minimise this problem.

Abbas S, Nasir S, Fakhar-e-Alam M, Saadullah M. 2019. Toxicity of different groups of insecticides and determination of resistance in Aedes aegypti from different habitats. Pakistan Journal of Agricultural Sciences 55, (in press). http://dx.doi.org/10.21162/PAKJAS/19.7778.

Ahmad T, Nasir S, Nasir I, Nawaz T, Rafique A, Yousaf I. 2017. Response surface modeling for West Nile viral encephalitis mosquito control experiments. Pakistan Veterinary Journal 37(4), 465‒469.

Alsheikh AA, Mohammed WS, Noureldin EM, Daffalla OM, Shrwani YA, Hobani KJ, Alsheikh FA, Alzahrani MH, Binsaeed AA. 2016. Studies on Aedes aegypti resistance to some insecticides in the Jazan district, Saudi Arabia. Journal of Egyptian Society of Parasitology 46(1), 209-216. http://dx.doi.org/10.12816/0026166.

Arslan A, Mukhtar MU, Mushtaq S, Zakki AB, Hammad M, Bhatti A. 2015. Comparison of Susceptibility Status of laboratory and field populations of Aedes aegypti against Temephos in Rawalpindi. Journal of Entomology and Zoological Studies 3, 374-378.

Brogdon WG, McAllister JC. 1998. Insecticide resistance and vector control. Emerging Infectious Diseases 4, 605. http://dx.doi.org/10.3201/eid0404.980410

Finney DJ. 1971. Probit analysis. Cambridge University Press, Cambridge, UK.

Habib N. 1996. Invisible Farmers: A Study on the Role of Woman in Agriculture and Impact of Pesticides on Them. Khoj Research and Publication Centre, Lahore, Pakistan, p 129.

Kilpatrick AM. 2011. Globalization, land use, and the invasion of West Nile virus. Science 334, 323–327. http://dx.doi.org/10.1126/science.1201010.

Lambrechts L, Scott TW, Gubler DJ. 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Neglected Tropical Diseases 4, e646. http://dx.doi.org/10.1371/journal.pntd.0000646.

Li X, Schuler MA, Berenbaum MR. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology 52, 231-53. http://dx.doi.org/10.1146/annurev.ento.51.110104.15110.4

Lima EP, Paiva MHS, de Araújo AP, da Silva ÉVG, da Silva UM, de Oliveira LN, Santana AEG, Barbosa CN, de Paivaneto CC, Goulart MOF, Wilding CS, Ayres CFJ, Santos MAVDM. 2011. Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasites & Vectors 4(5), 1-12. http://dx.doi.org/10.1186/1756-3305-4-5

Liu N. 2015. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annual Review of Entomology 60, 537-559. http://dx.doi.org/10.1146/annurev-ento-010814-020828.

Owusu HN, Jancaryova D, Malone D, Müller P. 2015. Comparability between insecticide resistance bioassays for mosquito vectors: time to review current methodology? Parasites & Vectors 8, 357. http://dx.doi.org/10.1186/s13071-015-0971-6.

Pimsamarn S, Sornpeng W, Akksilp S, Paeporn P, Limpawitthayakul M. 2009. Detection of insecticide resistance in Aedes aegypti to organophosphate and synthetic pyrethroid compounds in the north-east of Thailand. Dengue Bulletin 33, 194-202.

Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. 2011. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends in Parasitology 27, 91–8. http://dx.doi.org/10.1016/j.pt.2010.08.004.

Samidurai K, Jebanesan A, Saravanakumar A, Govindarajan M, Pushpanathan T. 2009. Larvicidal, ovicidal and repellent activities of Pemphis acidula Forst. (Lythraceae) against filarial and Dengue vector mosquitoes. Academic Journal of Entomology 2, 62-66.

Soko W, Chimbari MJ, Mukaratirwa S. 2015. Insecticide resistance in malaria-transmitting mosquitoes in Zimbabwe: a review. Infectious Diseases of Poverty 4, 1-12. http://dx.doi.org/10.1186/s40249-015-0076-7.

Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. 2014. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Medical 11, e1001619. http://dx.doi.org/10.1371/journal.pmed.1001619

Thomas MB, Read AF. 2016. The threat (or not) of insecticide resistance for malaria control. Proceeding of National Academy of Science 113, 8900-8902. http://dx.doi.org/10.1073/pnas.1609889113

WHO. 2006. World Malaria Report 2006, WHO Press, World Health Organization, Geneva Switzerland.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.