Differences in the Development of Blast Disease (Pyricularia oryzae) in Several Local Upland Rice Cultivars in Southeast Sulawesi, Indonesia

Paper Details

Research Paper 01/04/2021
Views (656)
current_issue_feature_image
publication_file

Differences in the Development of Blast Disease (Pyricularia oryzae) in Several Local Upland Rice Cultivars in Southeast Sulawesi, Indonesia

Teguh Wijayanto, Muh. Fadlan Tamrin, Asniah, Ni Wayan S. Suliartini, Andi Khaeruni
Int. J. Biosci. 18(4), 1-7, April 2021.
Copyright Statement: Copyright 2021; The Author(s).
License: CC BY-NC 4.0

Abstract

One of the important diseases in rice (Oryza sativa L.) is the blast disease (Pyricularia oryzae), which greatly affects the quality and quantity of rice production. This study aimed to determine the differences in the development of blast disease, as well as to obtain local upland rice cultivars in Southeast Sulawesi which had the lowest development of blast disease, in two different planting locations. This research was conducted in Lamomea Village, Konda District, Konawe Selatan Regency and Kambu Village, Kendari City. The research was arranged in a Complete Randomized Block Design (CRBD) consisting of 10 local upland rice cultivars of Southeast Sulawesi, namely: Tinangge (G1), Konkep (G2), Loiyo putih (G3), Waburi-buri (G4), Momea (G5), Wangkariri (G6), Bombana (G7), Wakawondu (G8), Wagamba (G9) and Bakala (G10), which were repeated 3 times. Six plant samples were taken from each plot. The variable observed was the development of blast disease, which consisted of disease severity, disease infection rate and disease progression curve. The results showed that from the planting location in Lamomea Village, the cultivar with the lowest disease progression was Konkep cultivar (G2) with disease severity of 12.59%, infection rate of 2.37% and disease progression curve of 35.59%. For cropping in Kambu Village, the cultivar with the lowest disease progression, namely the Momea cultivar (G5) had the lowest disease severity at 33.33%, the infection rate was 6.52% and the disease progression curve was 80.78%, which was lower than the other cultivars. Results of the study showed that there was an opportunity to obtain local upland rice cultivars that were relatively resistant to blast disease.

Agrios. 2005. Plant Pathology. Fifth Edition Elsevier Academic Press, New York.

Badan Pusat Statistik Sulawesi Tenggara. 2016. Produksi Padi gogo dalam angka Badan Pusat Statistik Sulawesi Tenggara. Kendari.

Fukuta Y, Xu D, Kobayashi N, Jeanie M, Yanoria T, Hairmansis A, Hayashi N. 2009. Genetic characterization of universal differential varieties for blast resistance developed under the IRRI-Japan Collaborative Research Project using DNA markers in rice (Oryza sativa L.). Advances in Genetics, Genomics and Control of Rice Blast Disease, p 325-335. https://link.springer.com/chapter/10.1007/978-1-4020-9500-9_32

Gilligan CA. 1990. Comparison of disease progress curves. New Phytologist 115, p 223–242. https://doi.org/10.1111/j.1469-8137.1990.tb00448.x

Hidayat YS, Nurdin M, Dan Suskandini RD. 2014. Penggunaan Trichoderma sp. Sebagai Agensia Pengendalian Terhadap Pyricularia Oryzae Cav. Penyebab Blas Pada Padi. Jurnal Agrotek Tropika  2(3), 414 – 419.

IRRI. 1996. Standard Evaluation System for Rice. Los Banos (PH): IRRI., p 52.

Nandy S, Manda N, Bhowmik PK, Khan MA, Basu SK. 2010. Sustainable management of rice blast (Magnaporthe grisea (Habbert) Bar.): 50 years of research progress in moleculer biology. In Arya and A.E. Parello (Eds.) Management of fungal plant pathogens. CAB International, p 92–106.

Norsalis E. 2011. Padi gogo dan padi sawah. Akses: 07 Juni 2019. http://repository.usu.ac.id/bitstream/123456789/17659/4/chapter%2011.pdf.

Ou SH. 1985. Rice blast disease. (2nd ed). Commonwealth Mycological Institute Kew, Surrey. England, p 380

Reskiyanti. 2009. Konservasi dan Pengembangan Sumberdaya Genetik Padi Untuk Kesejahteraan Petani. Makalah Disampaikan pada Pekan Budaya Padi di Subang Jawa Barat.

Santoso dan Nasution A. 2008. Pengendalian penyakit blas dan penyakit cendawan lainnya. Buku Padi 2. hlm. 531-563. Dalam Darajat AA, Setyono A, dan Makarim AK, dan Hasanuddin A. (Ed.). Padi Inovasi Teknologi. Balai Besar Penelitian Tanaman Padi, Sukamandi. Badan Penelitian dan Pengembangan Pertanian.

Sudir, Nasution A, Santoso dan Nuryanto B. 2014. Penyakit blas Pyricularia grisea pada tanaman padi dan strategi pengendaliannya. Iptek Tanaman Pangan 9(2), 85-96.

Sumarno dan Hidayat JR. 2007. Perluasan areal padi gogo sebagai pilihan untuk mendukung ketahanan pangan nasional. Buletin IPTEK Tanaman Pangan 2(1), 26-40.

Susanto A, Sudharto PS, Purba RY. 2005. Enhancing biological control of basal stem rot (Ganoderma boninense) in oil palm plantations. Mycopathologia 159, 153–157. https://doi.org/10.1007/s11046-004-4438-0

Taufik M. 2011. Evaluasi ketahanan padi gogo lokal  terhadap penyakit blas (Pyricularia oryzae) di lapang. Agriplus 21(1), 68–74.

Wang CJ, Guo J, Huang SH, Yang DC, Tian X, Zhang H. 2014. Allele mining of rice blast resistance genes at AC134922 locus. Biochemical and Biophysical Research Communications 446(4), 1085-1090. https://doi.org/10.1016/j.bbrc.2014.03.056

Yulianto dan Subiharta. 2009. Ketahanan padi varietas unggul baru terhadap penyakit blas (Magnaporthe gricea (T.T. Hebert) M.E. Barr) di lahan sawah tadah hujan Kabupaten Pemalang. Prosiding Seminar Ilmiah Nasional. BBP2TP dan UPN.

Yulianto. 2017. Pengendalian Penyakit Blas Secara Terpadu pada Tanaman Padi. Iptek Tanaman Pangan 12(1), 25-34.

Related Articles

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.

Anthelmintic potential of powdered papaya seed Carica papaya in varying levels against Ascaridia galli in broiler chicken

Roniemay P. Sayson, Mylene G. Millapez, Zandro O. Perez, Int. J. Biosci. 27(2), 114-121, August 2025.

Valorization of fish scale waste for the synthesis of functional gelatin-based biopolymers

N. Natarajan Arun Nagendran, B. Balakrishnan Rajalakshmi, C. Chellapandi Balachandran, Jayabalan Viji, Int. J. Biosci. 27(2), 102-113, August 2025.