Diversity of Arbuscular Mycorrhizal Fungi Associated with Maize and Peanut Crop in Northern Côte d’Ivoire
Paper Details
Diversity of Arbuscular Mycorrhizal Fungi Associated with Maize and Peanut Crop in Northern Côte d’Ivoire
Abstract
Arbuscular Mycorrhizal Fungi (AMF) are known to be more efficient and effective in helping the growth of plants. Understanding the diversity and community structure of AMF is important for optimizing their potential role in the functioning of terrestrial ecosystems. However, AMF diversity is less explored in tropical areas especially in northern CI, where agriculture is often encountered low yields. In this regard, exploring of AMF in these soils was conducted to look at the population of AMF indigenous. Rhizospheric and non-rhizospheric soils were collected from peanut and maize fields in different localities of the Korhogo area in northern Côte d’Ivoire. The density and Morphological diversity of AMF spores associated with these crops were determined in these soils. Then the effect of corn and peanut crops on the morphological diversity of AMF spores was also evaluated. Results showed that maize has significantly improved spore density of soil more than a peanut. The morphological identification of AMF spores associated with peanut and maize made it possible to list eleven species divided into five genera and three spore families including Gigasporaceae (36,36 %), Acaulosporaceae (18,18 %) and Glomeraceae (45,46 %). A better distribution of these different morphotypes has been observed in the rhizospheric soils of both crops, with a pronounced effect observed in the maize crop.
Asibuo JY, Akromah R, Adu-Dapaah HK, Safo-Kantanka O. 2008. Evaluation of nutritional quality of groundnut (Arachis hypogaea L.) from Ghana. African Journal of Food Agriculture and Nutrition Development 8(2), 133-150.
Appoloni S, Lekberg Y, Tercek MT, Zabinski CA, Redecker D. 2008. Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellow stone National Park (USA). Microbial Ecology 56, 649–659. https://doi.org/10.1007/s00248-008-9384-9
Bâ AM, Dalpé Y, Guissou T. 1996. Les Glomales d’Acacia holosericea et d’Acacia mangium. Bois et Forêt des Tropiques 250, 5-18. https://doi.org/10.19182/bft1996.250.a19862
Barea JM. 2015. Futurechallenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. Journal of Soil Sciences and Plant Nutrition. 15(2), 261-282. http://dx.doi.org/10.4067/S071895162015005000021
Bever JD, Morton JB, Antonovics J, Schultz PA. 1996. Host dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology 84, 71–82. https://doi.org/10.2307/2261701
Blaszkowski J, Tadych M, Madej T. 2002. Arbuscular mycorhizal fungi (Glomales Zycomycota) of the bleddowska desert, Poland. Societastis. Botanicorum Poniae 71(1), 71-85. https://doi.org/10.5586/asbp.2002.008
Bouamri R, Dalpé Y, Serrhini MN, Bennani A. 2006. Arbuscular mycorrhizal fungi species associated with rhizosphere of Phoenix dactylifera L. in Morocco. African Journal of Biotechnology 5, 510–516.
Bremner JM. 1960. Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science 55, 11-33. https://doi.org/10.1017/S0021859600021572
Daniell TJ, Husband R, Fitter AH, Young JPW. 2001. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology. 36, 203-209. https://doi.org/10.1111/j.1574-6941.2001.tb00841.x
De la Providencia IE, de Souza FA, Fernández F, Delmas NS, Declerck S. 2005. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis and hyphal healing mechanisms between different phylogenic groups. New Phytologist. 165, 261-271. https://doi.org/10.1111/j.1469-8137.2004.01236.x
Dobermann A, Cassman KG, 2004. “Environmental dimensions of fertilizer nitrogen: what can be done to increase nitrogen use efficiency and ensure global food security?” in Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Mosier AR et al. ed. Washington DC: Island Press. p 261-278.
Doley K, Jite PK. 2012. Response of groundnut (‘JL-24’) cultivar to mycorrhiza inoculation and phosphorous application. Notulae Scientia Biologicae. 4(3), 118-125. https://doi.org/10.15835/nsb437809
Driai S. 2016. Impact des polluants d’origine industrielle sur le développement des champignons mycorhiziens à arbuscules, sur leur diversité et sur la viabilité microbienne des sols des agro-écosystèmes du Nord-est algérien. Département de Biologie, Laboratoire de Biologie Végétale et Environnement Université Badji Mokhtar-Annaba, Algérie p 170.
Gerdermann JW, Nicolson TH. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British mycological Society 46, 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0
Jeffries P., Barea J. M. 2001. Arbuscular Mycorrhiza-a key component of sustainable plantsoit ecosystems. En: Hock (ed) The Mycota IX. Fungal Associations. Springer-Verlag, Berlin p. 95-113.
Jefwa JM, Okoth S, Wachir P, Karanja N, Kahindi J, Njuguini S, Ichami S, Mung’atu J, Okoth P, Huising J. 2012. Impact of land use types and farming practices on occurrence of arbuscular mycorrhizal fungi (AMF) Taita-Taveta district in Kenya. Agriculture Ecosystems Environment 157, 32-39.
Kellogg EA. 2001. Evolutionary history of the grasses. Plant Physiology 12, 1198-1205.
Koske R. E., Tessier B. 1983. A convenient permanent slide mounting medium. Mycological Society of America Newsletter 34, 59.
Lenoir I, Fontaine J, Lounès-Hadj SA. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses : A review. Phytochemistry 123, 4–15. https://doi.org/10.1016/j.phytochem.2016.01.002
Martínez-García LB. 2010. Micorrizas arbusculares en ecosistemas semiáridos. Respuesta a factor esdeestrés ambiental. Thesis Doctorales, Almería: Universidad d’Almería.
Moreno MT, Audesse P, Giroux M, Frenette N, Cescas M. 2001. Comparaison entre la détermination de la matière organique des sols par la méthode de Walkley-Black et la méthode de perte au feu. Agrosol 12(1), 49-58.
Morton JB. 1988. Taxonomy of VA mycorrhizal fungi: classification, nomenclature and identification. Mycotaxon 32, 267-324.
Morton JB, Benny GL. 1990. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37, 471-491.
Ndoye F, Kane, Mangaptché ELN, Bakhoum N, Sanon A, Diouf D, Sy MO, Baudoin E, Noba K, Prin Y. 2012. Changes in land use system and environmental factors affect arbuscular mycorrhizal fungal density and diversity, and enzyme activities in rhizospheric soils of Acacia senegal (L.) Willd. International Scholarly Research Notices, Ecology., p 13.
Oehl F, da Silva GA, Sánchez-Castro I, Goto BT, Maia LC, Vieira HEE, Barea JM, Sieverding E, Palenzuela J. 2011. Revision of Glomeromycetes with entrophosporoid and glomoid spore formation with three new genera. Mycotaxon. 117, 297-316.
Oehl F, Laczko E, Oberholzer HR, Jansa J, Egli S. 2017. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biology and Fertility of Soils. 52, 777- 797. https://doi.org/10.1007/s00374-017-1217-x
Parniske M. 2008. Arbuscular mycorrhizal: the mother of plant root endosymbioses. Nature reviews microbiology 6, 763-775. https://doi.org/10.1038/nrmicro1987
Rao RN, Talluri MVNK. 2007. An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals. Journal of Pharmaceutical, Biomedical Analysis. 43, 1-13. https://doi.org/10.1016/j.jpba.2006.07.004
Schenck NC, Perez Y. 1987. Manual for the Identification of VA Mycorrhizal Fungi, (first ed. Synergistic Publications) Gainesville, Florida, USA., p 245.
Schneider J, Stürmer SL, Guilherme LR, de Souza Moreira FM, Soares CR. 2013. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. Journal of Hazardous Materials. 262, 1105–1115. https://doi.org/10.1016/j.jhazmat.2012.09.063
Sherrell CG, Saunders WMH. 1966. An evaluation of methods for the determination of total phosphorus in natural soils. New Zealand Journal of Agricultural Research 9, 972-979. https://doi.org/10.1080/00288233.1966.10429356
Smith MR, Charvat I, Jacobson RL. 1998. Arbuscular mycorrhizae promote establishment of prairie species in a tall grass prairie restoration. Canadian Journal of Botanique 76, 1947-1954. https://doi.org/10.1139/b98-205
Voko DRRB, Nandjui J, Sery JMD, Fotso B, Amoa JA, Aka-Kouadio MS, Coulibaly S, Niamke S, Zeze A. 2013. Abundance and diversity of Arbuscular mycorrhizal fungal (AMF) communities associated with cassava (Manihot esculenta Crantz) rhizosphere in Abengourou, East Côte d’Ivoire. Journal of Ecology and the Natural Environment. 5(11), 360-370. https://doi.org/10.5897/JENE2013.0407
Wubet T, Weiß M, Kottke I, Teketay D, Oberwinkler F. 2004. Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytologist. 161, 517–528. https://doi.org/10.1046/j.1469-8137.2003.00924.x
Gisèle Amoin Koffi, Emmanuel Aya Diane Boudouin Dibi, Hyacinthe Attoh Anon, Fatou Ndoye, Niokhor Bakhoum, Diégane Diouf, Soumaïla Dabonné (2021), Diversity of Arbuscular Mycorrhizal Fungi Associated with Maize and Peanut Crop in Northern Côte d’Ivoire; IJB, V18, N3, March, P240-250
https://innspub.net/diversity-of-arbuscular-mycorrhizal-fungi-associated-with-maize-and-peanut-crop-in-northern-cote-divoire/
Copyright © 2021
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0