Effect of arbuscular mycorrhizal fungi on the dynamics of hydrogen peroxide, the activities of catalase, ascorbate peroxidase and Guaïcol peroxidase in Xanthosoma sagittifolium L. Schott rhizome and root during growth

Paper Details

Research Paper 01/05/2018
Views (283) Download (8)

Effect of arbuscular mycorrhizal fungi on the dynamics of hydrogen peroxide, the activities of catalase, ascorbate peroxidase and Guaïcol peroxidase in Xanthosoma sagittifolium L. Schott rhizome and root during growth

Djeuani Astride Carole, Mbouobda Hermann Désiré, Omokolo Ndoumou Denis
J. Bio. Env. Sci.12( 5), 1-15, May 2018.
Certificate: JBES 2018 [Generate Certificate]


The present study was conducted to determine the effects of four Arbuscular mycorrhizal fungi (AMF); Glomus intraradices, Glomus sp., Gigaspora margarita and Acaulospora tuberculata on the growth of X. sagittifolium (white cultivar) and stress enzyme expression. To evaluate the effect of that AMF on plant growth of the basal part of plant, the length (except rhizome), the fresh weight and the dry weight matter of roots and the rhizome were determine every 60 days for 180 days. The following experimental conditions were used X. sagittifolium + AMF and X. sagittifolium + AMF + Carbon source. The results obtained show that, mycorrhization significantly (P<0.05) affected the development of the basal part of the plant with increased length of the roots and mass of rhizome compared to the control. Glomus sp. and G. intraradices stimulated both the dry weight increase of roots and rhizomes respectively by 48 and 72% then 27 and 23.5% at day 180. Glomus sp. significantly stimulate the increased expression of hydrogen peroxide in rhizomes and roots in mycorrhizal X. sagittifolium plants. In presence of carbon source, significant values is 20.70 ± 1.38 mM.min-1.g-1 of FW obtained in roots of mycorrhizal plants with A. tuberculata. It was observed that addition of the carbon source significantly increased stress enzyme expression, with catalase been the most express enzyme compare to peroxidases. We conclude that the use of mycorrhizae in farming of X. sagittifolium may hold advantage of increasing the production and resistance against root rot disease.


Abdulrashid M, Agwunobi LN. 2009. Taro cocoyam (Colocasia esculenta) meal as feed ingredient in poultry. Pakistan Journal of Nutrition 8 (5), 668-673. http://dx.doi.org/10.3923/pjn.2009.668.673

Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399. http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701

Armada E, López-Castillo O, Roldán A, Azcón R. 2016. Potential of mycorrhizal inocula to improve growth, nutrition and enzymatic activities in Retama sphaerocarpa compared with chemical fertilization under drought conditions. Journal of Soil Science and Plant Nutrition 16,380 – 399.

Athar H, Khan A, Ashraf M. 2008.Exogenously applied ascorbic alleviates salt-induced oxidative stress in wheat. Environmental and Experiment Botany63, 224-231. http://dx.doi.org/10.1016/j.envexpbot.2007.10.018.

Atsushi M, Sachie H, Takaaki I. 2007. Effects of Arbuscular Mycorrhizal Fungi and Intercropping with Bahiagrass on Growth and Anti-oxidative Enzyme Activity of Radish. Journal ofJapan Society and Horticulture Science76 (3), 224–229. http://dx.doi.org/10.2503/jjshs.76.224.

Bárzana G, Aroca R, Ruiz-Lozano JM. 2015. Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environment 38, 1613–1627. http://dx.doi.org/10.1111/pce.12507.

Bilou I, Ocampo JA, Garcia-Garrido JM. 2000. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. Journal of Experimental Botany51, 1969–1977.

Chen Z, Silva H, Klessig DF. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic add. Science 262, 1883-1886.

Goleniowski MO, Del Longo SM. de Forchetti, Argüello JA. 2001. Relationships between peroxidases and in vitro bulbification in garlic (Allium sativum L.). In Vitro Cellular & Developmental Biology–Plant37(5),683–686. https://doi.org/10.1007/s11627-001-0119-6

Djeuani AC, Mbouobda HD, Niemenak N, Fotso, Elian Hubert D, Ngaha EC, Abilogo M, Omokolo ND. 2014. Effect of carbon source on minituberization of cocoyam (Xanthosoma sagittifolium): analysis of soluble sugars and amino acids contents. Current research in microbiology and Biotechnology 2 (6), 519-526.

Djeuani AC. 2009. Activation du système de défense Chitosan et Benzothiadiazole dépendant chez Xanthosoma sagittifolium L. Schott infecté par Pythium myriotylum. Mémoire de MASTER II. Université de Yaoundé I. 62p.

Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H. 2004.Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology 136, 3628–3638. http://dx.doi.org/10.1104/pp.104.048900

Fester T, Hause G. 2005. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15 (5), 373-9. http://dx.doi.org/10.1007/s00572-005-0363-4

Garg N, Chandel S. 2015. Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Mill sp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regulation 75, 521–534.

Kanmegne G, Omokolo ND. 2002. Changes in phenol content and peroxidase activity during in vitro organogenesis in Xanthosoma sagittifolium L. Schott. Plant Growth regulation 00, 1-5.

Karyotou K, Donaldson RP. 2007. Ascorbate peroxidase, a scavenger of hydrogen peroxide in glyoxysomal membranes. Archives of Biochemistry  and Biophysics434, 248–257. https://doi.org/10.1016/j.abb.2004.11.003

Kumar KR, Kanwar PS, DVS Raju. 2014. Symbiotic Effect of Arbuscular Mycorrhizal Fungi on Growth and Flowering of Micropropagated Plants of Chrysanthemum (Chrysanthemum dendranthemum). International Journal of Bio-resource and Stress Management 5 (3), 369-374. http://dx.doi.org/10.5958/09764038.2014.00582.Xccc

Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI. 2003. NADPH oxidase Atrboh D and Atrboh F genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal 22, 2623–2633. http://dx.doi.org/10.1093/emboj/cdg277

Laloi C, Apel K, Danon A. 2004. Reactive oxygen signaling: the latest news. Current Opinion in Plant Biology7, 323–328. http://dx.doi.org/10.1016/j.pbi.2004.03.005

Li A, Wang X, Leseberg CH, Jia J, Mao L. 2008. Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signalling in wheat (Triticum aestivum L.). Plant Signaling & Behavior 3, 654–656. https://doi.org/10.4161/psb.3.9.5757

Li H, Chen XW, Wong MH. 2016. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 145, 224–230. http://dx.doi.org/10.1016/j.chemosphere.2015.10.067

Liszkay A, Van der Zalm E, Schopfer P. 2004. Production of reactive oxygen intermediates equation M2, H2O2, and OH by maize roots and their role in wall loosening and elongation growth. Plant Physiology 136, 3114–3123. http://dx.doi.org/10.1104/pp.104.044784

Lucca Zanardo DI, Lima RB, Ferrarese MLL, Bubna GA, Ferrarese-Filho O. 2009. Soybean root growth inhibition and lignification induced by p-coumaric acid. Environmental and Experimental Botany66, 25-30.

Matamoros MA, Fernández-Garcïa N, Wienkoop S, Loscos J, Saiz A, Becana M. 2013. Mitochondria are an early target of oxidative modifications in senescing legume nodules. New Phytology197, 873–885. http://dx.doi.org/10.1111/nph.12049

Mathur N, Vyas A. 1999. Improved biomass production, nutrient uptake and establishment of in vitro raised Ziziphus mauritiana by VA mycorrhiza. Journal of Plant Physiology 155, 129–132. https://doi.org/10.1016/S0176-1617(99)80153-9

Mbouobda HD. 2011. Stimulation des mécanismes de défense dans l’interaction Xanthosoma sagittifolium (macabo)/Pythium myriotylum par le Chitosan et le Benzo (1,2,3) thiadiazole-7-carbothionic acid- s- méthyl ester (BTH). Thèse de Doctorat/PhD, 135p.

Mweta DE, Labuschagne MT, Elizma Koen, Ibrahim RMB, John DKS. 2008. Some properties of starches from cocoyam and cassava grown in Malawi. African Journal of Food Science 2, 102-111.

Njoku PC, Ohia CC. 2007. Spectrophometric Estimation Studies of Mineral Nutrient in Three cocoyam Cultivars. Pakistan Journal of Nutrition6, 616-619. http://dx.doi.org/10.3923/pjn.2007.616.619.

Omokolo ND, Tsala MG, Kanmegne G, Balange AP. 1995. In vitro induction of multiple shoots, plant regeneration and tuberization from shoot tips of cocoyam. C.R. Acad. Sci. 318, 773-778.

Parniske M. 2008.Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews: Microbiology6, 763- 775. http://dx.doi.org/10.1038/nrmicro1987.

Patai C, Kanogwan S, Supachitra C, Teerada W. 2016. Arbuscular mycorrhizal fungus improves the yield and quality of Lactuca sativa in an organic farming system. Science Asia 42, 315–322. http://dx.doi.org/10.2306/scienceasia15131874.2016.42.315

Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55, 1743–1750. https://doi.org/10.1093/jxb/erh188

Porcel R, Barea JM, Ruiz-Lozano JM. 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist 157,135–143. http://dx.doi.org/10.1046/j.1469-8137.2003

Qiang SW, Ying NZ, Ren XX. 2006. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of Soil Biology 42, 166–172.

Rafiq Lone, RaziaShuab, Vandna Sharma, Vijay Kumar, Rayees Mir, KoulKK. 2015. Effect of Arbuscular Mycorrhizal Fungi on Growth and Development of Potato (Solanum tuberosum) Plant. Asian Journal of Crop Science 7 (3), 233-243. http://dx.doi.org/10.3923/ajcs.2015.233.243

Rodriguez L, Perston TR, Peter K. 2009. Studies on the nutritive value for pig of new cocoyam (X. sagittifolium); digestibility and nitrogen balance with different levels of ensiled leaves in a basal diet of sugar cane juice. Livestock Research for Rural Development.21(2), 23-27.

Salzer P, Corbière H, Boller T. 1999. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus mosseae. Planta208, 319–325

Satya Vani M, Hindumathi A, Reddy BN. 2015. Application of arbuscular mycorrhizal fungi to improve plant growth in Solanum melongena L. Annual Biology Resources6, 21–28.

Shim I, Momose Y, Yamamoto A, Kim D, Usui K. 2003. Inhibition of catalase activity by oxidative stress and its relationships to salicylic acid accumulation in plants. Plant Growth Regulation 39, 285–92. https://doi.org/10.1023/A:1022861312375

Song JQ, Durrant WE, Wang S, Yan SP, Tan EH, Dong XN. 2011. DNA repair proteins are directly involved in regulation of gene expression during plant immune response. Cell Host Microbe9, 115–124. http://dx.doi.org/10.1016/j.chom.2011.01.011.

Spanu P and BonfanteFasolo P. 1988. Cell wall‐bound peroxidase activity in roots of mycorrhizal Allium porrum. New Phytologist 109, 119–124. http://dx.doi.org/10.1111/j.1469-8137.1988

Thorpe TA, Tran Thanh Van M, Gaspar T. 1978. Isoperoxidases in epidermal layers of tobacco and changes during organ formation in vitro. Physiologia Plantarum. 44, 388–394. http://dx.doi.org/10.1111/j.13993054.1978.tb01643.x

Tsafack TJJ. 2010. Microtuberisation chez Xanthosoma sagittifolium L. Schott et analyse de quelques aspects physiololiques et biochimiques. Thèse de Doctorat/PhD. Université de Yaoundé I. 150p.

Tsai YC, Hong CY, Liu LF, Kao CH. 2005. Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. Journal of Plant Physiology 162(3), 291-9. http://dx.doi.org/10.1016/j.jplph.2004.06.004

Velikova V, Loreto F. 2005. On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress, Plant, Cell and Environment 28, 318-327. http://dx.doi.org/10.1111/j.1365-3040.2004.01314.x

Wimalarathne HGMC, Sangakkara UR, Sumanasena HA. 2014. Effect of Arbuscular Mycorrhizal Fungi (AMF) on Shoot and Root Development of Black Pepper (Piper nigrum. Linn.) Rooted Cuttings. International Invention Journal of Agricultural and Soil Science 2(6), 105-111.

Yanling MO, Yongqi W, Ruiping Y, Junxian Z, Changming L, Hao Li, Jianxiang M, Yong Z, Chunhua W, Xian Z, 2016. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions. Frontiers in Plant Sciences7, 1-15. http://dx.doi.org/10.3389/fpls.2016.00644.

Zhang W, Tian Z, Pan X, Zhao X, Wang F. 2013. Oxidative stress and non-enzymatic antioxidants in leaves of three edible canna cultivars under drought stress. Horticulture and Environment Biotechnology 54, 1–8. https://doi.org/10.1007/s13580-013-0070-6