Welcome to International Network for Natural Sciences | INNSpub

Effect of Bacillus thuringiensis var. kurstaki HD-1-based biopesticide on the pathogenicity of Phytophthora palmivora

Research Paper | May 1, 2018

| Download 5

Gadji Alahou André Gabazé, Kouamé Koffi Gaston, Coulibaly Klotioloma, Yapo Ossey Bernard, Aka Aka Romain, Brar Kaur Satinder, Tyagi Rajeshwar, Abo Kouabenan

Key Words:

J. Bio. Env. Sci.12( 5), 455-463, May 2018


JBES 2018 [Generate Certificate]


Black pod disease caused by Phytophthora spp limits cocoa yield. This study aims at assessing the antifungal activity of Bacillus thuringiensis var. kurstaki HD-1 on pathogenicity of the parasite. The pea-based agar medium was treated either with Btk HD-1 suspension at different concentrations (C1 = 100%, C2 = 50% and C3 = 25%) or with the reference fungicide (3.33g/L). The medium distributed in petri dishes was inoculated with a 6 mm-diameter mycelial disc. After five days of incubation, safe and immature pods were inoculated with extracts taken from the previous culture medium. The control pods were infected by black pod, 48 hours after inoculation; whereas, those which have been inoculated with extracts taken from the medium treated with biopesticide showed necrotic lesions on the 3rd and 5th days of incubation. On the contrary, with reference fungicide showed no necrotic lesions on cocoa pods. The size of the necrotic lesions varied from 0 to 10.37 ± 0.46cm diameter.The rate of pods infected was 25%, 50% and 100%, respectively, for C1, C2 and C3. The infectivity of P. palmivora decreased significantly (p < 0.001) in the presence of biopesticide concentrations. The effect of the biopesticide evolves according to its concentration. This formulation could be an interesting alternative in an integrated strategy for the control of this cocoa disease.


Copyright © 2018
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Effect of Bacillus thuringiensis var. kurstaki HD-1-based biopesticide on the pathogenicity of Phytophthora palmivora

Arora N, Sachdev B, Gupta R, Vimala Y, Bhatnagar RK, 2013. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1. PLoS ONE 8(6), e66603. doi:10.1371/journal.pone.0066603.

Babacauh KD. 1980. Structure et dynamique des populations de Phytophthora sp parasite du cacaoyer (Theobroma cacao L.). Thèse d’Etat, Université de Paris-Sud., Paris, France. 153 p.

Bar-Hen A. 1998. Quelques méthodes statistiques pour l’analyse des dispositifs forestiers. Vol. 5, Série FORAFRI. 118 p.

Coulibaly K, Kébé BI, Koffi KN, Mpika J, Koné D. 2013. Caractérisation des isolats de Phytophthora spp du verger cacaoyers de Cote d’Ivoire. Journal of Applied Biosciences 70, 5567-5579.

Duchet C, Franquet E, Lagadic L, Lagneau C. 2015. Effects of Bacillus thuringiensis israelensis and spinosad on adult emergence of the non-biting midges Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in coastal wetlands. Ecotoxicology and Environmental Safety 115, 272-278.

Fontem DA, Olanya OM, Tsopmbeng GR, Owona MAP. 2005. Pathogenicity and metalaxyl sensitivity of Phytophthora infestans isolates obtained from garden huckleberry, potato and tomato in Cameroon. Crop Protection 24, 449-456.

Gadji AAG, Yapo OB, Abo K, Coulibaly K, Kébé BI, Gnépé JR, Tyagi RD, 2015. In vitro assessment of biopesticide Bacillus thuringiensis var. kurstaki HD-1 effectiveness on phytophthora palmivora, agent of cocoa black pod rot in Côte d’Ivoire. European Scientific Journal 11, 276-292.

ICCO. 2009. ICCO (International Cocoa Organization) quarterly bulletin of cocoa statistics. Cocoa Year 2008/09, 27 May 2009, 35(2).

Lagadic K, Roucaute M, Caquet T. 2014. Bti sprays do not adversely affect non-target aquatic invertebrates in French Atlantic coastal wetlands. Journal of Applied Ecology 51, 102-113.

Mawussi G. 2008. Bilan environnemental de l’utilisation de pesticides organochlorés dans les cultures de coton, café et cacao au Togo et recherche d’alternatives par l’évaluation du pouvoir insecticide d’extraits de plantes locales contre le scolyte du café (Hypothenemus hampei Ferrari). Thèse de doctorat, Université de Toulouse, France 154 p.

Ndoumbe-Nkeng M, Cilas C, Nyemb E, Nyasse S, Bieysse D, Flori A, Sache I. 2004. Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Protection 23, 415-424.

Orisajo SB, Dongo LN, Agbeniyi SO, Adedeji AR, Fademi OA, Otuonye AH, Okeniyi MO, Adeniyi DO, Oduwaye OF Kolawole OO. 2011. Assessment of Ultimax Plus 72 W.P. for the Control of Black Pod Disease of Cocoa in Nigeria. Journal of Basic and Applied Scientific Research 1, 880-884.

Ortiz-Garcia CF. 1996. Etude de la diversité génétique de populations de Phytophthora pathogènes du cacaoyer (Theobroma cacao L.) et du cocotier (Cocos nucefera L). Thèse de Doctorat, Université Paul Sabatier, France, 85 p.

Roh, Yul J, Choi YJ, Shun, Li M, Jin BR, Je YH. 2007. Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control. Journal of Microbiology and Biotechnology 17, 547-559.

Shuman JL. 2001. Anthracnose Fruit Rot Resistance in Strawberry. PhD thesis, North Carolina State University, USA. 121 p.

Sunpapao A, Pornsuriya C. 2014. Effects of chitosan treatments on para rubber leaf fall disease caused by Phytophthora palmivora Butler – a laboratory study. Songklanakarin Journal Sciences and Technology 36, 507-512.

Șuțan AN, Popescu A, Mihăescu C, Soare CL, Marinescu VM. 2014. Analele Ştiinţifice ale Universităţii ‘‘Al. I. Cuza” Iaşi s. II a. Biologie Vegetală 60, 5-12.

Zhou Y, Choi Y-L, Sun M, Yu Z, 2008. Novel roles of Bacillus thuringiensis to control plant diseases. Applied of Microbiology Biotechnology 80, 563-572.