Effect of covering water surface with azolla (Azolla filiculoides Lam.) on water quality, growth and production of nile tilapia fed practical azolla-diets in earthen ponds

Paper Details

Research Paper 01/12/2012
Views (449) Download (13)
current_issue_feature_image
publication_file

Effect of covering water surface with azolla (Azolla filiculoides Lam.) on water quality, growth and production of nile tilapia fed practical azolla-diets in earthen ponds

Youssouf Abou, Martin P. Aina, Biaou Dimon, Emile D. Fiogbé, Jean-Claude Micha
Int. J. Agron. Agri. Res.2( 12), 1-9, December 2012.
Certificate: IJAAR 2012 [Generate Certificate]

Abstract

Although common in Africa’s rural areas, covering fish pond with Azolla is an extensive aquaculture practice that generates lower fish growth performances. To improve fish yield, a 90-days experiment was implemented to evaluate the effects of several Azolla cover (AC) levels on water nutrient, plankton dynamic, growth and production of Nile tilapia supplementary fed in ponds. Six triplicate groups of ponds were covered with one of the following AC extensions: 0%, 15%, 30%, 45%, 60% and 75% of the surface. Fingerlings were fed with a practical diet containing 20% of Azolla meal (AM). Except for temperature, all the other physicochemical parameters, and Chlorophyll a concentration and zooplankton abundance were affected by AC (P < 0.05). The SGR strongly correlate with the AC level [SGR (%/day) = – 0.0003 (AC)² + 0.0135 (AC) + 2.2045; R² = 0.96; P < 0.001, N = 18)], and values ranged from 1.50 %/day to 2.24%/day (P < 0.05). Yield and fish production ranged from 710 kg/ha to 1940 kg/ha for yield, and from 2900 kg/ha/year to 7870 kg/ha/year for fish production. The best values were obtained with 30% AC (P < 0.05), whereas performances with 0, 15 and 45% AC was similar. It appears that fish growth is a result of an interaction between the negative effects of AC on phytoplankton biomass and the positive effects of the food supplied. The study recommends applying a maximum AC level of 30% in ponds for Nile tilapia rearing in tropical areas.

VIEWS 22

Abdel-Rahman MHM., Shanab SMM., Shabana EF, Shaalan SN, Abdel-tawwab M. 2002. Azolla performance and effect of its natural cover on water quality and abundance in Abbassa area, Sharkia Governorate (Egypt). Egyptian Journal of Biotechnology 11, 365-383.

Abdel-Tawwab M, Abdelghany AE, El-Ayouty YM, El-Essawy AA. 2002. Effect of different doses of inorganic fertilizers on water quality, primary productivity and production of Nile tilapia (Oreochromis niloticus L.) in earthen ponds. Egyptian Journal of Agricultural Research 80(4), 1891-1907.

Abdel-Tawwab M. 2006. Effect of free-floating Macrophyte, Azolla pinnata, on water physico-chemistry, primary productivity, and the production of Nile tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L., in earthen ponds. Journal of Applied Aquaculture 18, 21-41.

Abou Y. 2007. Effect of feeding with Azolla on production of Nile tilapia in Benin wetlands. Doctorate Dissertation, Namur University Press, 218 p.

Abou Y, Fiogbé ED, Micha J-C. 2007. A preliminary assessment of growth and production of Nile tilapia, Oreochromis niloticus L., fed Azolla-based-diets in earthen ponds. Journal of Applied Aquaculture 19(4), 55-69.

Alalade OA, Iyayi EA. 2006. Chemical composition and the feeding value of Azolla (Azolla pinnata) meal for egg-type chicks. International Journal of Poultry Science 5(2), 137-141.

APHA. 1992. Standard Methods for the Examination of Water and Wastewater. 18th ed. American Public Health Association, Washington, DC.

Basak B, Pramanik MdAH, Rahman MS, Tarafdar SU, Roy BC. 2002. Azolla (Azolla pinnata) as a feed ingredient in Broiler ration.  International Journal of Poultry Science 1(1), 29-34.

Bicudo DC, Fonseca BM, Bini LM, Crossetti LO, Bicudo CEM, Arau´ jo-Jesus T. 2007. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology 52, 1120–1133.

Boyd CE. 1990. Water Quality for Pond culture. Alabama Agricultural Experimental Station, Auburn University, Auburn, AL, USA, p. 482.

Carrapiço F, Teixeira G, Adélia Diniz M. 2000. Azolla as a biofertilizer in Africa. Achallenge for the future. Revista de Ciêcias Agrárias 23, 120-138.

Cazzanelli M, Warning TP, Christoffersen KS. 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605, 113-122.

Detimmerman F, Petry M. 1988. Etude de la valeur alimentaire d’Azolla pour le lapin. Mémoire de Licence, Faculté des Sciences, Université Catholique de Louvain, Louvain-La-Neuve, 178 p.

Diana JS, Lin CK, Schneeberger PJ. 1991. Relationship among nutrient inputs, water nutrient concentrations, primary productivity and yield of Oreochromis niloticus in ponds. Aquaculture 92, 323-341.

Duncan DB. 1955. Multiple range and multiple F-tests. Biometrics 11, 1-42.

Gilmont S. 1997. Etude de l’effet d’Azolla et d’Oreochromis niloticus (L.) sur la proportion d’Azote ammoniacal volatilisable, en riziculture inondée. Mémoire de fin d’études pour l’obtention du diplôme d’Ingénieur agronome (Section tropicale). Université Catholique de Louvain, Louvain-la-Neuve, Belgique.

Janes RA, Eaton JW, Hardwick K. 1996. The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on growth of submerged macrophytes. Hydrobiologia 340, 23-26.

Fiogbé ED, Micha J-C, Van Hove C. 2004. Use of a natural aquatic fern, Azolla microphylla, as a main component in food for Omnivorous-phytoplanktonophagous tilapia, Oreochromis niloticus L. Journal of Applied Ichthyology 20, 517-520.

Genkai-Kato M. 2007. Macrophyte refuges, prey behaviour and trophic interactions: consequence for lake water clarity. Ecology Letters 10, 105-114.

Håkanson L, Boulion VV. 2003. A general dynamic model to predict biomass and production of phytoplankton in lakes. Ecological Modelling 165, 285–301

Kanangire CK. 2001. Effet de l’alimentation à base d’Azolla sur la production d’un écosystème agro-piscicole en zones marécageuses au Rwanda. Dissertation Doctorale, 220 p.

Khatun A, Ali MA, Dingle JG. 1999. Comparative of the nutritive value for laying hens of diets containing Azolla (Azolla pinnata) based on formulation using digestible protein and digestible amino acid versus total protein and total amino acid. Animal Feed Science and Technology 81, 43-56.

Kröck T. 1987. Effect of the Azolla cover on the conditions in the floodwater. Pp 75-88. In Interaction between rice and Azolla. International Rice Research Institute (IRRI), Los Banos, Laguna, Philippines, 134 p.

Kröck T, Alkämper J, Watanabe I. 1988. Effect of an Azolla cover on the condition in the floodwater. Journal of Agronomy and Crop Sciences 161, 185-189.

Lejeune  A,  Cagauan  A,  Van  Hove  C.  1999. Azolla research and developpment: recent trends and priorities. Symbiosis 27, 333-351.

Leonard V. 1997. Use of an aquatic fern (Azolla filiculoides) in two species of tropical fish (Oreochromis niloticus and Tilapia rendalli). Doctoral dissertation, Catholic University of Louvain, Louvain-la-Neuve, Belgium.

Li Zhuoxin, Luo Xianchi, Xu Tianxiang, Jiang Yongtang. 1991. Ecological techniques on broad water body (ETBWB) and effects of Azolla raising and its application. Chinese Journal of Applied Ecology 2(2), 113-120.

Liu CC. 1988. The “Rice-Azolla-Fish” system. RAPA Bulletin vol. 4: 1988, FAO, Bangkok, 37 p.

de Macale MAR, Vlek PLG. 2002. The role of Azolla cover in improving the nitrogen use efficiency of lowland rice. Plant and soil 263, 311-321.

Meerhoff M, Mazzeo N, Moss B, Rodriguez-Gallego L. 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37, 377-391.

Mélard Ch. 1986. Bases biologiques de l’élevage intensif du Tilapia du Nil O. niloticus. Cahiers d’Ethologie Appliquée 5 (3), 1-224.

Micha J-C. 2000. Les fermiers écologistes du tiers-monde. Systèmes d’élevages intégrés en zones humides tropicales. Livret technique du vidéogramme.

Micha J-C, Leonard V. 2001-2. Digestibility of the aquatic fern Azolla filiculoides Lamarck in two species of tilapia: The phytoplanktonophagous Oreochromis niloticus (L.) and the macrophytophagous Tilapia rendalli (Boulenger). Bulletin des Séances de l’Académie Royale des Sciences d’Outre-Mer 47, 147-157.

Péchar L. 1987. Use of an acetone:methanol mixture for the extraction and spectrophotometric determination of chlorophyll-a in phytoplankton. Archiv für Hydrobiology Supplement, (Algological studies 46) 78, 99-117.

Sanginga NC, Van Hove C. 1989. Amino acids of Azolla as affected by strains and population density. Plant and soil 117, 263-267.

Shiomi N, Kitoh S. 2001. Culture of Azolla in a pond, Nutrient composition and Use as Fish feed. Soil Science and Plant Nutrition 47(1), 27-34.

Tacon AGJ. 1990. Standard Methods for the Nutrition and Feeding of Farmed Fish and shrimp. Argent Laboratories Press, Washington, DC, USA, 454pp.

Tang H, Xie P, Lu M, Xie L, Wang J. 2002. Studies on the Effects of Silver Carp (Hypophthalmichthys molitrix) on the Phytoplankton in a Shallow hypereutrophic lake through an Enclosure Experiment. International Review of Hydrobiology 87, 107 -119.

Villegas GG, San Valentin GO. 1989. Effect of Azolla cover on nitrogen and rice in flooded Maahas clay. pp 65-89. In Azolla: its culture, management and utilization in Philippines college, Laguna (Philippines).

Vlek PLG, Diakite MY, Mueller H. 1995. The role of Azolla in curbing ammonia volatilization from flooded rice systems. Fertilizer Research 42, 165-174.