Effect of curcumin acting as an antidote against breast carcinoma- A review

Paper Details

Review Paper 10/11/2023
Views (208) Download (75)
current_issue_feature_image
publication_file

Effect of curcumin acting as an antidote against breast carcinoma- A review

Soumosish Paul, Sangram Polley
Int. J. Biosci.23( 5), 158-168, November 2023.
Certificate: IJB 2023 [Generate Certificate]

Abstract

Breast cancer is a complex disease caused by irregular cell growth and proliferation. Women are more likely to suffer from it than men. Even with advances in technology and treatment strategies, therapeutic intervention is still warranted. Curcumin is an active bio-available compound found in turmeric, shows some anticancer properties. Cancer cell lines treated with curcumin showed increased levels of Bax, an apoptosis activator, and p53 DNA-binding activity. As apoptotic genes are expressed, TRAP3 and MCL-1 are upregulated, whereas TRAIL, AP13 are downregulated by breast cancer. miR-19a, miR-19b proteins are upregulated, and miR-19 is regulated by downstream expression. Curcumin exhibited its effect through different signaling pathways like nuclear factor kappa B(NF-kB) pathway, 3(STAT3) pathway, Mitogen activated protein kinase (MAPK) pathway, Wnt (Wingless-Int)/β-catenin signaling pathway etc. In this review, the role of curcumin as an antidote against breast cancer is explored with a focus on some specific genes and pathways involved in the progression of breast cancer.

VIEWS 56

Abou-Bakr AA, Eldweny HI. 2013. p16 expression correlates with basal-like triple-negative breast carcinoma. Ecancermedicalscience. 7:317. DOI: 10.3332/ecancer.2013.317

Aggarwal BB, Kumar A, Bharti AC. 2003. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research 23(1A), 363-398.

Banerjee K, Resat H. 2016. Constitutive activation of STAT3 in breast cancer cells: A review. International Journal of Cancer 138, 2570-8. https://doi: 10.1002/ijc.29923

Banerjee M, Singh P, Panda D. 2010. Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS Journal 277, 3437-48. https://doi: 10.1111/j.1742-4658.2010.07750.x

Benhaj K, Akcali KC, Ozturk MR. 2006. Redundant expression of canonical Wnt ligands in human breast cancer cell lines.  Oncol Reports 15, 701-707.

Bordoloi D, Kunnumakkara AB. 2018. The Potential of  Curcumin: A Multi targeting Agent in Cancer Cell Chemosensitization. In: Bharti AC and Aggarwal BB, editors. Role of Nutraceuticals in Chemoresistance to Cancer2. Amsterdam: Elsevier Inc. 31-60. https://DOI: 10.2174/1574892810666151020101706

Carroll JS. 2016. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. European Journal of Endocrinology 175, R41–R49. https://doi: 10.1530/EJE-16-0124

Charpentier MS, Whipple RA, Vitolo MI, Boggs AE, Slovic J, Thompson KN. 2014. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment. Cancer Research 74, 1250-60. https://doi: 10.1158/0008-5472

Chiu T, Su C. 2009. Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kB p65 expression in breast cancer MDA-MB-231 cells. International Journal of Molecular Medicine, 469-475. https://doi: 10.3892/ijmm_00000153.

Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. 2002. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Letters 512, 334-40. https://doi: 10.1016/s0014-5793(02)02292-5.

Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. 2016. CRISPR-d Cas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7,46545-46556. https://doi: 10.18632/oncotarget.10234

Chung SS, Vadgama JV. 2015. Curcumin and Epigallocatechin Gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκ Bsignaling. Anticancer Research 35, 39-46.

Cong YS, Wright WE, Shay JW, 2002. Human Telomerase and Its Regulation. Microbiology and Molecular Biology Reviews 66, 407-425. https://doi: 10.1128/MMBR.66.3.407-425.2002

Dickson MA, Schwartz GK. 2009. Development of cell-cycle inhibitors for cancer therapy. Current Oncology 16, 36–43. https://doi: 10.3747/co.v16i2.428.

Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP. 2012. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast canc.er Journal of Clinical Investigation 122,1469-1486. https://doi: 10.1172/JCI57349

Elmore S. 2007. Apoptosis: A review of programmed cell death. Toxicologic Pathology  35, 495-516. https://doi: 10.1080/01926230701320337.

Foulkes William D, Flanders Tamar Y, Pollock Pamela M, Hayward Nicholas K. 1997. The CDKN2A (p16) Gene and Human Cancer. Molecular Medicine 3, 5-20. https://doi.org/10.1007/BF03401664

Hui R, Macmillan RD, Kenny FS, Musgrove EA, Blamey RW, Nicholson RI, Robertson JF, Sutherland RL. 2000. INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4 a messenger RNA is a marker of poor prognosis. Clinical Cancer Research  6, 2777–87.

Ibrahim A, El-Meligy A, Lungu G, Fetaih H, Dessouki A, Stoica G. 2011. Curcumin induces apoptosis in a murine mammary gland adenocarcinoma cell line through the mitochondrial pathway. European Journal of Pharmacology 668, 127-32. https://doi: 10.1016/j.ejphar.2011.06.048

Jiang M, Huang O, Zhang X, Xie Z, Shen A, Liu H. 2013. Curcumin induces cell death and restores Tamoxifen sensitivity in the Antiestrogen-resistant breast cancer cell lines MCF-7/LCC2and MCF-7/ LCC9. Molecules 18, 701-20. https://doi: 10.3390/molecules18010701

Kang HJ, Cui Y , Yin H , Scheid A, Hendricks WPD, Schmidt J, Sekulic A, Kong D, Trent JM, Gokhale V. 2016. A pharmacological chaperone molecule induces cancer cell death by restoring tertiary DNA structures in mutant hTERT promoters. Journal of the American Chemical Society 138,13673–13692. https://DOI: 10.1021/jacs.6b07598

Kelleher C, Teixeira MT, Förstemann K, Lingner J. 2002. Telomerase: Biochemical Considerations for Enzyme and Substrate. Trends in Biochemical Sciences 27, 572–579. https:// DOI: 10.1016/s0968-0004(02)02206-5

Kim S. 2016. An SS. Role of p53 isoforms and aggregations in cancer.  Medicine  95(26), e3993.  https://doi: 10.1097/MD.0000000000003993

Kretzmann Jessica A, Irving Kelly L, Smith Nicole M, Evans Cameron W.  2021. Modulating gene expression in breast cancer via DNA secondary structure and the CRISPR toolbox. NAR Cancer 3(4) https://doi: 10.1093/narcan/zcab048

Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. 2009. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. Int. Journal of Agricultural and Food Chemistry 57, 305–10. https://doi: 10.1021/jf802737z

Liu Q, Loo WTY, Sze SCW, Tong Y. 2009. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1transcription. Phytomedicine 16(10), 916–22. https:// doi: 10.1016/j.phymed.2009.04.008

Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. 2021. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies- An Updated Review. Cancers 13, 4287. https://doi: 10.3390/cancers13174287

Lv Z-D, Liu X-P, Zhao W-J, Dong Q, Li F-N, Wang H-B. 2014. Curcumin induces apoptosis inbreast cancer cells and inhibits tumor growth in vitro and in vivo. International Journal of Clinical and Experimental Pathology 7, 2818–24.

Ly H. 2011. Telomere Dynamics in Induced Pluripotent Stem Cells: Potentials for Human Disease Modeling. World Journal of Stem Cells 3, 89–95. https://doi: 10.4252/wjsc.v3.i10.89

Masuelli L, Benvenuto M, Fantini M, Marzocchella L, Sacchetti P, Di Stefano E, 2013. Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice. Journal of Biological Regulators and Homeostatic Agents 27, 105-19

Mehta K, Pantazis P, McQueen T, Aggarwal BB.  1997. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anti-Cancer Drugs 8, 470–81. https://doi: 10.1097/00001813-199706000-00010

Milde-Langosch K, Bamberger AM, Rieck G, Kelp B, Loning T. 2001. Overexpression of the p16 cell cycle inhibitor in breast cancer is associated with a more malignant phenotype. Breast Cancer Research and Treatment 67, 61–70. https://doi: 10.1023/a:1010623308275

Moghtaderi H, Sepehri H, Attari F. 2017. Combination of arabinogalactan and curcumin induces apoptosis in breast cancer cells in vitro and inhibits tumor growth via over expression of p53 level invivo. Biomedicine &and Pharmacotherapy 88, 582–94. https://doi: 10.1016/j.biopha.2017.01.072

Mohammadi-Yeganeh S, Paryan M, Arefian E, Vasei M, Ghanbarian H, Mahdian R, et al. 2016. MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumour Biol 37(7), 8993-9000. https://doi: 10.1007/s13277-015-4513-9

Palacios J, Honrado E, Osorio A, Cazorla A, Sarrió D, Barroso A, Rodríguez S, Cigudosa JC, Diez O, Alonso C, Lerma E, Dopazo J, Rivas C, Benítez J. 2005. Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Research and Treatment 90, 5–14. https://doi: 10.1007/s10549-004-1536-0.

Parrales A, Iwakuma T. 2015. Targeting Oncogenic Mutant p53 for Cancer Therapy. Frontiers in Oncology 5(Suppl 1), 288. https://doi: 10.3389/fonc.2015.00288.

Patel PB, Thakkar VR, Patel JS.  2015. Cellular effect of Curcumin and Citral combination on breast cancer cells: induction of apoptosis and cell cycle arrest. Journal of Breast Cancer 18,225–34. https://doi: 10.4048/jbc.2015.18.3.225

Patel Priyanka L, Suram Anitha, Mirani Neena, Bischof Oliver, Herbig Utz. 2016. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence Proceedings of the National Academy of Sciences (PNAS) 113(34), E5024-33. https://doi: 10.1073/pnas.1602379113

Prasad CP, Rath G, Mathur S, Bhatnagar D, Ralhan R. 2009. Potent growth suppressive activity of curcumin in human breast cancer cells: modulation of Wnt/beta-catenin signaling. Chemico-Biological Interactions 181, 263–71. https://doi: 10.1016/j.cbi.2009.06.012

Ramachandran C, Rodriguez S, Ramachandran R, Raveendran Nair PK, Fonseca H, Khatib Z. 2005. Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Research 25, 3293-302.

Ramachandran C, You W. 1999. Differential sensitivity of human mammary epithelial and breast carcinoma cell lines to curcumin. Breast Cancer Research and Treatment 54(3), 269–278. https://doi: 10.1023/a:1006170224414.

Roser M, Ritchie H. 2015. Cancer .Our World in Data.

Rowe DL, Ozbay T, O’Regan RM, Nahta R. 2009. Modulation of the BRCA1 protein and induction of apoptosis in triple negative breast cancer cell lines by the Polyphenolic compound Curcumin. Breast Cancer Basic and Clinical Research 3, 61–75. https://doi: 10.4137/bcbcr.s3067

Shao Z-M, Shen Z-Z, Liu C-H, Sartippour MR, Go VL, Heber D. 2002. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. International Journal of Cancer 98, 234–40.  https://DOI: 10.1002/ijc.10183

Sharma P, Stecklein SR, Kimler BF, Sethi G, Petroff BK, Phillips TA, Tawfik OW, Godwin AK, Jensen RA. 2014. The prognostic value of BRCA1 promoter methylation in early stage triple negative breast cancer. Journal of Cancer Therapeutics and Research 3, 1–11. https://doi: 10.7243/2049-7962-3-2

Singer C, Rasmussen A, Smith HS, Lippman ME, Lynch HT, Cullen KJ. 1995. Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: Evidence for paracrine function. Cancer Research 55, 2448–54.

Song JH, Kang HJ, Luevano LA, Gokhale V, Wu K, Pandey R, Sherry Chow H-H, Hurley LH,  Kraft AS. 2019. Small-molecule-targeting hairpin loop of hTERT promoter G-quadruplex induces cancer cell death. Cell Chemical Biology 26,1110-1121. https://doi.org/10.1016/j.chembiol.2019.04.009

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. 2020. Globalcancer statistics: GLOBOCAN estimates of incidence and mortality worldwide36 cancersin 185countries. CA: A Cancer Journal for Clinicians 71, 209-249. https://doi: 10.3322/caac.21660

Talib Wamidh H, Al-hadid Sonia A, Ali Mai B Wild, AL-Yasari Intisar Hadi, Ali Mohammed R Abd. 2018. Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. Breast Cancer Targets and Therapy 10, 207–217. https://doi: 10.2147/BCTT.S167812

Turner NC, Reis-Filho JS. 2006. Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25, 5846-53.  https://doi: 10.1038/sj.onc.1209876.

Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P, Artemov D, Kowalski J, Carraway H, van Diest P. 2012. Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor. Oncogene 31, 3223- 3234.      https://doi: 10.1038/onc.2011.483

Wang K, Zhang C, Bao J, Jia X, Liang Y, Wang X. 2016. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Scientific Reports 6, 26064. https://doi: 10.1038/srep26064.

Wang Y, Yu J, Cui R, Lin J, Ding X.  2016. Curcumin in treating breast cancer: a review. Journal of Laboratory Automation 21(6), 723-731.  https://doi: 10.1177/2211068216655524.

Xia Y, Jin L, Zhang B, Xue H, Li Q, Xu Y. 2007.The potentiation of curcumin on insulin-like growth factor-1 action in MCF-7 human breast carcinoma cells. Life Sciences 80, 2161-9. https:// doi: 10.1016/j.lfs.2007.04.008

Xu S, Yang Z, Fan Y. 2016. Curcumin enhances temsirolimus-induced apoptosis in human renal carcinoma cells through upregulation of YAP/p53. Oncology Letters 12(6), 4999–5006. https://doi: 10.3892/ol.2016.5376

Xu J, Chen Y, Olopade OI. 2010. MYC and Breast Cancer. Genes and Cancer 1, 629–640. https://doi: 10.1177/1947601910378691.

Xu X, Gammon MD, Zhang Y, Bestor TH, Zeisel SH, Wetmur JG, Wallenstein S, Bradshaw PT, Garbowski G, Teitelbaum SL, Neugut AI, Santella RM, Chen J. 2009. BRCA1 promoter methylation is associated with increased mortality among women with breast cancer. Breast Cancer Research and Treatment 115(2), 397-404. https://doi: 10.1007/s10549-008-0075-5.

Zhou Q, Wang X, Liu X, Zhang H, Lu Y, Su S. 2011. Curcumin enhanced antiproliferative effect of mitomycin C in human breast cancer MCF-7 cells in vitro and in vivo. Acta Pharmacologica Sinica 32, 1402–10. https://doi.org/10.1038/aps.2011.97

Zimmer J, Tacconi EMC, Folio C, Badie S, Porru M, Klare K, Tumiati M,  Markkanen E, Halder S, Ryan A. 2016. Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Molecular Cell 61, 449–460. https://doi: 10.1016/j.molcel.2015