Effect of lead on plant growth, lead accumulation and biochemical changes of Pistia stratiotes L.

Paper Details

Research Paper 01/12/2016
Views (517) Download (10)
current_issue_feature_image
publication_file

Effect of lead on plant growth, lead accumulation and biochemical changes of Pistia stratiotes L.

Monica Mishra, Ashirbad Mohapatra, Kunja Bihari Satapathy
Int. J. Biosci.9( 6), 66-78, December 2016.
Certificate: IJB 2016 [Generate Certificate]

Abstract

Aquatic macrophytes are well known accumulators for heavy metals in contaminated water bodies. The objective of this study was to evaluate the effect of lead nitrate on the growth, accumulation and biochemical changes of Pistia stratiotes L. Plants were cultured in Hoagland’s medium which was exposed to different concentrations (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 mg/l) of lead nitrate solutions. The toxicity symptoms of Pb on P. stratiotes showed chlorosis on leaves followed by significant decrease in the relative growth, biomass productivity, chlorophyll content, protein and carbohydrate content with increased concentrations. But with the increase in Pb concentration (20, 40, 60, 80, 100 ppm) an increased proline content (0.516±0.01, 0.739±0.01, 0.956±0.02, 1.434±0.03, 1.844±0.05 µg/g fresh weight) was observed in Pistia stratiotes irrespective of the period of treatment. Increased concentrations of Pb (100 mg/l) in the growth medium enhanced the bio-concentration factor of P. stratiotes up to an optimum value of 1239.56, while the relative growth of plants significantly decreased (0.79 g). These responses indicate the potential of Pistia stratiotes L. not only as a lead scavenger but also a suitable tool for phytoremediation in the aquatic environment.

VIEWS 17

Abubakar MM, Ahmad MM, Getso BU. 2014. Rhizofiltration of heavy metals from eutrophic water using Pistia stratiotes in a controlled environment. IOSR-Journal of Environmental Science, Toxicology and Food Technology 8(6), 1-3. http://www.iosrjournals.org

ATSDR. 2007. CERCLA Priority list of hazardous sub-stances. ATSDR Home. Retrieved March 22, 2011. http://www.atsdr.cdc.gov/cercla/07list.html

Bates LS, Waldran RP, Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant Science 39(1), 205-207. http://dx.doi:10.1007/BF00018060

Bharadwaj P, Chaturvedi AK, Prasad P. 2009. Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L. Nature and Science 7(8), 63-75. http://www.sciencepub.net/nature

Brunet J, Repellin A, Varrault G, Terrync N, Zuily- fodil Y. 2008. Lead accumulation in the roots of grass pes (Lathyrus sativusl): A novel plant for phytoremediation systems. Comptes Rendus Biologies 331, 859-864. http://dx.doi:10.1016/j.crvi.2008.07.002

Butcher D. 2009. Phytoremediation of lead in soil: recent applications and future prospects. Appl. Spectroscopy Rev 44(2), 123-139. http://dx.doi.org/10.1080/05704920802352580

Chandrashekhar KR, Sandhyarani S. 1996. Salinity induced chemical changes in Crotalaria striata DC. Indian Journal of Plant Physiology 1, 44–48.

Chaney RL, Malik M. 1997. Phytoremediation of soil metals. Current Opinions Biotechnology 8(3), 279-284. http://dx.doi.org/10.1016/SO958-1669(97)80004-3

Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL. 2007. Improved under-standing of hyperaccumulation yields commercial phytoex-traction and phytomining technologies. Journal of Environmental Quality 36(5), 1429-1443. http://dx.doi.org/10.2134/jeq2006.0514

Chen J, Shiyab S, Han EX, Monts DI, Waggoner AW, Su ZY.2009. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18, 110-121. http://dx.doi.org/10.1007/s10646-008-0264-3

Chris A, Zeeshan M, Abraham G, Prasad SM. 2006. Proline accumulation in Cylindrospermum sp. Environmental and experimental botany 57(1), 154-159. http://dx.doi.org/10.1016/j.envexpbot.2005.05.008

Costa G, Spitz E. 1997. Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Science 128 (2), 131–140. http://dx.doi.org/10.1016/SO168-9452(97)00148-9

Dai LP, Xiong ZT, Huang Y, Li MJ. 2006. Cadmium- induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ-mental Toxicology 21(5), 505–512. http://dx.doi.org/10.1002/tox.20212

Davies CS, Nielsen SS, Nielsen NC. 1987. Flavour improvement of soybean preparations by genetic removal of lipoxygenase-2. Journal of the American Oil Chemists Society 64(10), 1428–1433. http://dx.doi.org/10.1007/BF02636994

Gallardo-Williams M, Whalen V, Benson R, Martin D. 2002.Accumulation and retention of lead by cattail (Typha domingensis), hydrilla (Hydrilla verticillata), and duckweed (Lemna obscura). J. Environ. Sci. Health, Part A 37(8), 1399-1408. http://dx.doi.org/10.1081/ESE-120013265

Hedge JE, Hofreiter BT. 1962. In: carbohydrate chemistry, 17 (Eds. Whistler, R.L. and Be Miller, J.N.), Academic press, New York.

Hoenig M, Baeten H, Vanhentenrijk S, Vassileva E, Quevauviier PH. 1998. Critical discussion on the need for an efficient mineralization procedure for the analysis of plant material by atomic spectrometric methods. Analytica Chimica Acta 358 (1), 85 -94. http://dx.doi.org/10.1016/S0003-2670(97)00594-1

Irfan S. 2015. Phytoremediation of heavymetals using macrophyte culture. Journal of International Scientific Publications 9, 476-485. http://www.scientific-publications.net

John R, Ahmad P, Gadgil K, Sharma S. 2008. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant. Soil. Environment 54(6), 262-270. http://wos:0002S7368400005

Koroi SAA. 1989. Gele-electrophers spectral photometrischoe under change Zomeinfiussder temperature and structure Peroxidase isoenzyme. Physiology Vegetation, 20, 15-22.

Leblebici Z. 2010. Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnae): Interactions with nutrient enrichment. Water Soil Pollution 214, 175-184. http://dx.doi.org/10.1007/s11270-010-0413-.1

Lone MI. 2008. Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. Jour. of Zhejiang University Science 9(3), 210-220. http://www.zju.edu.cn/jzus/article.php?doi=10.1631/jzus.B0710633

Lowry OH, Rosenberg NJ, Farr AL, Randall RJ. 1951. Protein measurement with folin phenol reagent. Journal of Biology and Chemistry 193, 265-275. http://www.jbc.org/content/19311/265.citation

Lu X, Kruatrachue M, Pokethiyook P, Homyok K. 2004. Removal of cadmium and zinc by water hayacinth, Eichhornia crassipes, Science Asia 30, 93- 103.

Malar S, Vikram SS, Paula F, Perumal JC, Venkatachalam P. 2014. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical studies 1, 54-55. http://dx.doi.org/10.1186/s40529-014-0054-6

Matlock MM, Howerton BS, Atwood DA. 2002. Chemical precipitation of heavy metals from acid mine drainage. Water research 36 (19), 4757-4764. http://dx.doi.org/10.1016/S0043-1354(02)00149-5

Mc Comb J, Hentz JS, Miller GS, Begonia M, Begonia G. 2012. Effects of lead on plant growth, lead accumulation and phytochelation contents of hydroponically- grown Sesbania exastata. World Environment 2(3), 38-43. http://dx.doi.org/10.5923/j.env.20120203.04

Melegy A. 2010. Adsorption of lead (II) and zinc (II) from aqueous solution by bituminous coal. Geotech. Geol. Engineering 28(4), 549-558. http://dx.doi.org/10.1007/s10706-010-9309-5

Mishra M, Pradhan C, Satpathy KB. 2014. Decontamination of lead from aquatic environment by exploitation of floating macrophyte  Azolla microphylla Kauf. IOSR-Journal of Environmental Science, Toxicology and Food Technology 8(12), 17-23. http://www.iosrjournals.org.

Mohan BS, Hosetti BB. 1997. Potential phytotoxicity of lead and cadmium to Lemna minor L. growth in sewage stabilization ponds. Environment Pollution 98 (2), 233–238.

Mun HW, Hoe AL, Koo LD. 2008. Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings, Journal of environmental sciences 20 (11), 1341-1347. www.10.1016/S1001-0742(08)62231-7

Palma JM, Sandalio LM, Javier Corpas F, Romero Puertas MC, Mc Carthy I, Rio LA. 2002. Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry 40(6), 521–530. http://dx.doi.org/10.1016/S0981-9428(02)01404-3

Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J. 2009. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology 41(9), 1665-1677. http://dx.doi.org/10.1016/j.biocel.2009.03.005

Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka D. 2002. Accumulation and detoxification of lead ions in legumes. Phytochemistry 60(2), 153-162. http://dx.doi.org/10.1016/S0031-9422(02)00067-5

Pillai P. 2016. Phytoremediation of heavy metals from aqueous environment using aquatic macrophyte Pistia stratiotes L. Journal of Environmental Science, Computer science and Engineering & Technology 5(3), 391-401. http://www.jecet.org

Porra RJ, Thompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) – Bioenergetics 975(3), 384-394. http://dx.doi.org/10.1016/S0005-2728(89)80347-0

Rabie MH, Eleiwa ME, Aboseoud MA, Khalil KM. 1992. Effect of nickel on the content of carbohydrate and some minerals in corn and broad bean plants. Journal of King Abdulaziz University; Science 4, 37-43.

Raskin I, Smith RD, Salt DE. 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8(2), 221-226. http://dx.doi.org/10.1016/S0958-1669(97)80106-1

Rijal M, Amin M, Rohman F, Suarsini E, Natsir NA, Subhan. 2016.  Pistia stratiotes and Limnocharis flava as phytoremediation heavy metals lead and cadmium in the Arbes Ambon, International Journal of Sciences: Basic and Applied Research 27 (2), 182-188.

Saxe H. 1991. Phytosynthesis and stomatal response to polluted air and the use of physiological and biochemical response easy detection and diagnostic tools. In:  Advances in Botanical Research, J.A. Callow (ed.), Academic Press, Totonto 18, 1-128.

Sharma P, Dubey RS. 2005. Lead toxicity in plants, Brazilian journal of plant physiology 17(1), 35-52.

Singh G, Agnihotri RK, Sharma RR, Mushtaq A. 2012. Effect of lead and nickel toxicity on chlorophyll and proline content of urd (Vigna mungo L.) seedling. International Journal of Plant Physiology and Biochemistry 4(6), 136-141. http://dx.doi.org/10.5897/IJPPB12.005

Stiborova M, Ditrichova M, Brezinova A. 1987. Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biology and Plant science 29, 453-467. http://dx.doi.org/10.1007/BF02882221

Su Y, Han FX, Sridhar BBM, Monts DL. 2005. Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environmental Toxicology and Chemistry 24(8), 2019-2026. http://dx.doi.org/10.1897/04-329R.1

Thayaparan M, Iqbal SS, Chathuranga PKD, Iqbal MCM. 2013. Rhizofiltration of Pb by Azolla pinnata. International Journal of Environmental Science 3 (6), 1811-1821. http://dx.doi.org/10.6088/ijes.2013030600002

Vecchia FD, Larocca N, Moro L, Defaveri S, Andreoli C, Rascio N. 2005. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea Canadensis exposed to cadmium, Plant Science 168(2), 329-338. http://dx.doi.org/10.1016/j.plantsci.2004.07.025

Wilkins DA. 1978. The measurement of tolerance to endemic factors by means of root growth. New phytologist 80(3), 623-633. http://dx.doi.org/10.1111/j.1469-8137.1978.tb01595.x

Zayed A, Gowthaman S, Terry N. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed, Journal of environmental quality 27(3), 715-721. http://dx.doi:10.2134/jeq1998.00472425002700030032x