Effect of lead on the morphology of erythrocytes in red tilapia (Oreochromis sp.)

Paper Details

Research Paper 01/08/2021
Views (319) Download (16)

Effect of lead on the morphology of erythrocytes in red tilapia (Oreochromis sp.)

Van-Thanh Vo, Thai-Minh-Long Le, Thi-Quynh-Anh Duong, Huyen Nguyen Thi Thuong
Int. J. Biosci.19( 2), 153-159, August 2021.
Certificate: IJB 2021 [Generate Certificate]


The study investigated the effect of lead at concentrations of 0.5 mgL-1, 1.0 mgL-1, 1.5 mgL-1 on the morphology of red blood cells in Oreochromis sp. Experimental results showed that at lead concentrations of 0.5 mgL-1, 1.0 mgL-1, 1.5 mgL-1, the size of the major axis of erythrocytes decreases gradually compared to the control, decreased from 10.177±0.782 μm to 7.989±0.862 μm. The size of minor axis of erythrocytes gradually increases from 6.052±0.787 μm (control) to 7.458±0.801 μm (concentration 1.0mgL-1), but the size of minor axis decreases from 7.458±0.801 μm (concentration 1.0mgL-1) to 7.312±0.885 μm (concentration 1.5mgL-1). Perimeter and area of erythrocytes increase due to the emergence of more premature red blood cells.


Adams KF, Johnson G, Hornowski KE, Lineberger TH. 1979. The effect of copper on erythrocyte deformability. A possible mechanism of hemolysis in acute copper intoxication. Biochimica et Biophysica Acta 550, 279–287.

Adeyemo OK. 2007. Haematological Profile of Clarias gariepinus (Burchell, 1822) Exposed to Lead. Turkish Journal of Fisheries and Aquatic Sciences 7, 163–169.

Affonso EG, Polez VLP, Corrêa CF, Mazon AF, Araújo MRR, Moraes G, Rantin FT. 2002. Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 133(3), 375–382. https://doi.org/10.1016/S1532-0456(02)00127-8

Barham WT, Smit GL, Schoonbee HJ. 1980. The effect of bacterial infection on erythrocyte fragility and sedimentation rate of rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology 16(2), 177–180. https://doi.org/10.1111/j.1095-8649.1980.tb03697.x

Benfey TJ, Biron M. 2000. Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aquaculture 184(1–2), 167–176.

Brenden RA, Huizinga HW. 1986. Pathophysiology of experimental Aeromonas hydrophila infection in goldfish, Carassius auratus (L.). Journal of Fish Diseases 9(2), 163–167. https://doi.org/10.1111/j.1365-2761.1986.tb00999.x

Chernyavskikh SD, Quyet DH, Van Thanh V. 2018. Effect of Temperature on the Morphometrical and Physical Parameters of Erythrocytes and Polymorphonuclear Leucocytes in Carassius gibelio (Bloch). Inland Water Biology 11(1), 92–96. https://doi.org/10.1134/S1995082918010030

Chernyavskikh SD, Vo VT, Erina TA, Yaroslavtsev SV, Vorobyeva OV, Krasovskaya LV. 2016. Morphofunctional indices of erythrocytes and polymorphonuclear leukocytes Rana ridibunda Pall under the influence of temperature factor. Intenational Journal of Pharmacy & Technology 8(2), 14486–14494.

Clauss TM, Dove ADM, Arnold JE. 2008. Hematologic Disorders of Fish. Veterinary Clinics of North America: Exotic Animal Practice 11(3), 445–462. https://doi.org/10.1016/j.cvex.2008.03.007

Dethloff GM, Bailey HC, Maier KJ. 2001. Effects of Dissolved Copper on Select Hematological, Biochemical, and Immunological Parameters of Wild Rainbow Trout (Oncorhynchus mykiss). Archives of Environmental Contamination and Toxicology 40(3), 371–380. https://doi.org/10.1007/s002440010185

Frolova AY, Chernyavskikh SD, Quyet HD, Thanh VV. 2017. The Effect of the Incubation Temperature on Morphological and Physical Parameters of Hypophthalmichthys molitrix Erythrocytes and Polymorphonuclear Leukocytes. Research Journal of Pharmacy and Technology 10(3), 795–798. https://doi.org/10.5958/0974-360X.2017.00150.0

Gill TS, Pant JC. 1985. Erythrocytic and leukocytic responses to cadmium poisoning in a freshwater fish, Puntius conchonius ham. Environmental Research 36(2), 327–337. https://doi.org/10.1016/0013-9351(85)90028-3

Hrubec TC, Cardinale JL, Smith SA. 2000. Hematology and Plasma Chemistry Reference Intervals for Cultured Tilapia (Oreochromis hybrid). Veterinary Clinical Pathology 29(1), 7–12. https://doi.org/10.1111/j.1939-165X.2000.tb00389.x

Ichikawa H, Ronowicz K, Hicks M, Gebicki JM. 1987. Lipid peroxidation is not the cause of lysis of human erythrocytes exposed to inorganic or methylmercury. Archives of Biochemistry and Biophysics 259(1), 46–51. https://doi.org/10.1016/0003-9861(87)90468-1

Kori-Siakpere O, Ubogu EO. 2008. Sublethal haematological effects of zinc on the freshwater fish, Heteroclarias sp. (Osteichthyes: Clariidae). African Journal of Biotechnology 7(12), 2068–2073. https://doi.org/10.5897/AJB07.706

Mehjbeen J, Nazura U. 2014. Assessment of heavy metals (Cu, Ni, Fe, Co, Mn, Cr, Zn) in rivulet water, their accumulations and alterations in hematology of fish Channa punctatus. African Journal of Biotechnology 13(3), 492–501. https://doi.org/10.5897/AJB2013.13131

Nilsson S, Holmgren S. 1976. Uptake and release of catecholamines in sympathetic nerve fibres in the spleen of the cod, Gadus morhua. European Journal of Pharmacology 39(1), 41–51. https://doi.org/10.1016/0014-2999(76)90111-4

Nussey G, Van Vuren JHJ, du Preez HH. 1995a. Effect of copper on the differential white blood cell counts of the Mozambique tilapia (Oreochromis mossambicus). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 111(3), 381–388. https://doi.org/10.1016/0742-8413(95)00064-X

Nussey G, Van Vuren JHJ, du Preez HH. 1995b. Effect of copper on the haematology and osmoregulation of the Mozambique tilapia, Oreochromis mossambicus (Cichlidae). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 111(3), 369–380. https://doi.org/10.1016/0742-8413(95)00063-1

Panigrahi AK, Misra BN. 1979. Effect of mercury on the morphology of erythrocytes in Anabas scandens. Bulletin of Environmental Contamination and Toxicology 23(1), 784–787. https://doi.org/10.1007/BF01770042

Ribarov SR, Benov LC. 1981. Relationship between the hemolytic action of heavy metals and lipid peroxidation. Biochimica et Biophysica Acta (BBA) – Biomembranes 640(3), 721–726. https://doi.org/10.1016/0005-2736(81)90102-4

Satheeshkumar P, Ananthan G, Kumar DS, Jagadeesan L. 2012. Haematology and biochemical parameters of different feeding behaviour of teleost fishes from Vellar estuary, India. Comparative Clinical Pathology 21(6), 1187–1191. https://doi.org/10.1007/s00580-011-1259-7

Satheeshkumar P, Senthilkumar D, Ananthan G, Soundarapandian P, Khan AB. 2011. Measurement of hematological and biochemical studies on wild marine carnivorous fishes from Vellar estuary, southeast coast of India. Comparative Clinical Pathology 20(2), 127–134. https://doi.org/10.1007/s00580-010-0966-9

Sharma J, Langer S. 2014. Effect of Manganese on haematological parameters of fish, Garra gotyla gotyla. Journal of Entomology and Zoology Studies 2(3), 77–81.

Silveira-Coffigny R, Prieto-Trujillo A, Ascencio-Valle F. 2004. Effects of different stressors in haematological variables in cultured Oreochromis aureus S. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 139(4), 245–250. https://doi.org/10.1016/j.cca.2004.11.009

Tomova E, Arnaudov A, Velcheva I. 2008. Effects of zinc on morphology of erythrocytes and spleen in Carassius gibelio. Journal of Environmental Biology 29(6), 897–902.

Vosylienė MZ. 1999. The effect of heavy metals on haematological indices of fish (Survey). Acta Zoologica Lituanica 9(2), 76–82. https://doi.org/10.1080/13921657.1999.10512290

Witeska M, Kościuk B. 2003. The changes in common carp blood after short-term zinc exposure. Environmental Science and Pollution Research 10(5), 284–286. https://doi.org/10.1065/espr2003.07.161

Yang JL, Chen HC. 2003. Effects of gallium on common carp (Cyprinus carpio): acute test, serum biochemistry, and erythrocyte morphology. Chemosphere 53(8), 877–882. https://doi.org/10.1016/S0045-6535(03)00657-X

Zapata A. 1980. Splenic Erythropoiesis and Thrombopoiesis in Elasmobranchs: An Ultrastructural Study. Acta Zoologica 61(1), 59–64. https://doi.org/10.1111/j.1463-6395.1980.tb01291.x