Effect of maturation stage on the phytonutrient content of seeds of three species of Canavalia cultivated in the Gbèkê region (Côte d’Ivoire)

Paper Details

Research Paper 05/08/2024
Views (98) Download (19)
current_issue_feature_image
publication_file

Effect of maturation stage on the phytonutrient content of seeds of three species of Canavalia cultivated in the Gbèkê region (Côte d’Ivoire)

Adjo Sylvie Ahouran Kouakou, Kouassi Martial-Didier Adingra, Assi Anicet Agnissan, Hubert Kouassi Konan
Int. J. Biosci.25( 2), 114-124, August 2024.
Certificate: IJB 2024 [Generate Certificate]

Abstract

Legumes are plants with high nutritional values. It is necessary to control the nutritional quality of legumes at different stages of maturity for better popularization. This study aims to contribute to food security through determination of the phytochemical and antioxidant characteristics of the seeds of three legumes of the Canavalia genus according to their stage of maturity. Seeds of different stages collected in a field in the Gbèkê region served as biological material for this study. The seeds of three species at different stages of maturity: 30 days (S1), 40 days (S2), 50 days (S3), 60 days (S4) and 80 days (S5) after fertilization were collected and then dried in the sun and finally ground to obtain raw flour which was analyzed according to standard procedures. The results revealed that the contents of total phenolic compounds, flavonoids and tannins, suffered a decrease during seed maturation with the highest contents observed at the S1 stage. On the other hand, at the level of carotenoids, the peak was observed at stage S4 for all the seeds of the legumes studied. Overall, it appears that the best seed harvest stage for all the legumes studied is the S4 stage. This stage corresponds to the 60th day after fertilization of the flowers for species of the Canavalia genus. These seeds are potential sources of protein that can contribute to the fight against protein-energy deficiencies.

VIEWS 35

AOAC. 2012. Official Methods of Analysis of the AOAC International No. 994.12. 19th Chapter 4, 18-19. Official Journal of the European Communities 19.9.98, Gaithersburg, Maryland, USA.

Aruoma OI, Murcia A, Butler J, Halliwell B. 1993. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. Journal of Agricultural and Food Chemistry 41(11), 1880-1885. https://doi.org/10.1021/jf00035a014

Azevedo MI, Pereira AF, Nogueira RB, Rolim FE, Brito GA, Wong DV, Lima-Júnior RC, de Albuquerque Ribeiro R, Vale ML. 2013. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Molecular Pain 9(53), 1-14. https://doi.org/10.1186/1744-8069-9-53.

Bainbridge Z, Tomlins K, Wellings K, Westby A. 1996. Methods for assessing quality characteristics of non-grain starch staples. (Part 2. Field Methods.). Methods for assessing quality characteristics of non-grain starch staples. Natural Resources Institute,Chatham, Kent, 1-32.

Ballistreri G, Arena E, Fallico B. 2009. Influence of ripeness and drying process on thepolyphenols and tocopherols of Pistacia vera L. Molecules 14(11), 4358- 4369. https://doi.org/10.3390/molecules14114358

Barros L, Correia DM, Ferreira ICFR, Baptista P, Santos-Buelga C. 2008. Optimization of the determination of tocopherols in Agaricus sp. Edible mushrooms by a normal phase liquid chromatographic method. Food Chemistry 110(4), 1046-1050. https://doi.org/10.1016/j.foodchem.2008.03.016

Bediakon BKD, Beugre GAM, Bouatene D, Koffi PVN. 2019. Evaluation of the physicochemical properties of four wild leafy vegetables from the Agboville region (Southern Côte d’Ivoire). International Journal of Agronomy and Agricultural Research 15(3), 21-27.

Benchikh Y, Louaileche H, George B, Merlin A. 2014. Changes in bioactive phytochemical content and in vitro antioxidant activity of carob (Ceratonia siliqua L.) as influenced by fruit ripening. Industrial Crops and Products 60(6), 298-303. https://doi.org/10.1016/j.indcrop.2014.05.048

Boukhanouf S, Louaileche H, Perrin D. 2016. Phytochemical content and in vitro antioxidant activity of faba bean (Vicia faba L.) as affected by maturity stage and cooking practice. International Food Research Journal 23(3), 954-961.

Boutin JP, Dronne Y, Ducournau S, Gueguen J, Leguen J, Munier- Jolain N, Seve B, Tivoli B. 2006. Les protéagineux. Ed. INRA, 102p.

Carvalho LMJ, Gomes PB, Godoy RLO, Pacheco S, Monte PHF, Carvalho JLV. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch). Food Research International 47(2), 337-340. https://doi.org/10.1016/j.foodres.2011.07.040

CILSS (Comité inter-État de lutte contre la sécheresse au Sahel). 2022. Rapport Régional sur la Sécurité Alimentaire et Nutritionnelle au Sahel et en Afrique de l’Ouest. 66 p.

CILSS, CILSS, FSIN et GNAFC. 2023. Rapport Régional sur la Sécurité Alimentaire et Nutritionnelle au Sahel et en Afrique de l’Ouest. 36 p.

Friedman M, Jürgens HS. 2000. Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry 48(6), 2101-2110. https://doi.org/10.1021/jf990489j

Gbotognon OJ. 2021. Impact du stade de maturité de récolte sur les propriétés biochimiques, nutritionnelles et les propriétés antioxydantes de trois champignons sauvages comestibles cultivés en Côte d’Ivoire. Thèse de Doctorat, Université Nangui Agrogoua, Abidjan (Côte d’Ivoire), 190 p.

Giusti M., Wrolstad RE. 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy, Current Protocols. Food Analytical Chemistry, 13 p.

Hegedüsová A, Mezeyová I, Timoracká M, Šlosár M, Musilová J, Juríková T. 2015. Total polyphenol content and antioxidant capacity changes in dependence on chosen garden pea varieties. Potravinarstvo Slovak Journal of Food Sciences 9(1), 1-8. https://doi.org/10.5219/412

Holderbaum DF, Kon T, Guerra MP. 2014. Dynamics of total phenolic content in different apple tissues and genotypes : impacts and relevance for breeding programs. Scientia Horticulturae 168, 58-63. https://doi.org/10.1016/j.scienta.2014.01.020

Katsuragi H, Shimoda K, Kubota N, Nakajima N, Hamada H. 2010. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana. Bioscience, Biotechnology and Biochemistry 74, 1920-1924. https://doi.org/10.1271/bbb.100335

Kim YJ. 2007. Antimelanogenic and antioxidant properties of gallic acid. Biological and Pharmaceutical Bulletin 30(6), 1052-1055. https://doi.org/10.1248/bpb.30.1052

Koffi AC, Kossonou Y K, Adingra KMD, Yapi A E-J, Kouassi KC, Koffi-Nevry R. 2022. Microbiological and nutritional quality of complementary foods for children (6 to 24 months) produced in the city of Man (Côte d’Ivoire). Microbiology Research Journal International 32(9), 41-58. https://doi.org/10.9734/mrji/2022/v32i91344

Kouakou AAS, Konan KH, Cissé M, Kouadio EJP, Kouamé LP. 2022b. Effect of ripening stage on biochemical composition of seeds from three species of Canavalia spp consumed as protein substitutes in Côte d’Ivoire. International Journal of Biochemistry Research & Review 31(9), 1-9. https://doi.org/10.9734/ijbcrr/2022/v31i9776

Kouakou AAS, Konan KH, Kané F, Kanga KA, Kouadio EJP, Kouamé LP. 2022a. Valorization of some minor plants of Côte d’Ivoire : Biochemical parameters and nutritional composition of the legume Mucuna pruriens seeds according to their maturity stage. Biological and Pharmaceutical Sciences 20(2), 37-45. https://doi.org/10.30574/gscbps.2022.20.2.0269

Mbaiogaou A, Hema A, Ouedraogo M, Pale E, Naitormbaide M, Mahamout Y, Nacro M. 2013. Etude comparative des teneurs en polyphénols et en antioxydants totaux d’extraits de graines de 44 variétés de voandzou (Vigna subterranea (L.) Verdcourt). International Journal of Biological and Chemical Sciences 7(2), 861-871. https://doi.org/10.4314/ijbcs.v7i2.41

Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006

Nagata M, Yamashita I. 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit.  Nippon Shokuhin Kogyo Gakkaish 39(10), 925-928. https://doi.org/10.3136/nskkk1962.39.925

Padulosi S, Hoeschle-Zeledon I. 2004. Underutilized plant species: what are they? Low External Input Sustainable Agriculture 20(1), 5-6.

Pekkarinen SS, Heinonen IM, Hopia AI. 1999. Flavonoids, quercetin, myricetin, kaemferol and (+) catechin and antioxidants in methyl linoleate. Journal of the Science of Food and Agriculture 79(4), 499-506. https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<499::AID-JSFA204>3.0.CO;2-U

Persic M, Mikulic-Petkovsek M, Slatnar A, Solar A, Veberic R. 2018. Changes in phenolic profiles of red-colored pellicle walnut and hazelnut kernel during ripening. Food Chemistry 252, 349-355. https://doi.org/10.1016/j.foodchem.2018.01.124

Peschel W, Sánchez-Rabaneda F, Diekmann W, Plescher A, Gartzía I, Jiménez D, Lamuela-Raventós R, Buxaderas S, Codina C. 2006. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chemistry 97(1), 137-150. https://doi.org/10.1016/j.foodchem.2005.03.033

Rémond D, Walrand S. 2017. Les graines de légumineuses : caractéristiques nutritionnelles et effets sur la santé. Innovations Agronomiques 60, 133-144.

Ribeiro B, Valentao P, Baptista P, Seabra RM, Andrade PB. 2007. Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food and Chemical Toxicology 45(10), 1805-1813.

Rodriguez-Amaya DB, Kimura M. 2004. Harvest Plus Handbook for Carotenoid Analysis. International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT), Washington DC & Cali, 2, 58.

Salamatullah AM, Mohammed SA, Khizar H, Mehmet MÖ, Nurhan U. 2021. Effect of maturing stages on bioactive properties, fatty acid compositions, and phenolic compounds of peanut (Arachis hypogaea L.) kernels harvested at different harvest times. Journal of Oleo Science 70(4), 471-478. https://doi.org/10.5650/jos.ess20320

Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in enzymology 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Srinivasan M, Sudheer AR, Menon VP. 2007. Ferulic acid : therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition 40, 92-100. https://doi.org/10.3164/jcbn.40.92

Tchumou M, Yué Bi YC, Tano K, Kouonon LC, Benjamin NY. 2018. Physical and biochemical characteristics of red and black beans varieties of Phaseolus lunatus (L.) consumed in south and east of Côte d’Ivoire. Global scientific journals 6(11), 40-62.

Tchumou M. 2017. Enquête ethnobotanique et caractérisation physico-chimique des graines de haricot, Phaseolus lunatus (Fabaceae) consommées au Sud et à l’Est de la Côte d’Ivoire en fonction du niveau de maturité et du temps de cuisson. Thèse unique, Université Nangui Abrogoua, Abidjan (Côte d’Ivoire), 229 p.

Yagoub AA, Abdalla AA. 2007. Effect of domestic processing methods on chemical, in vitro digestibility of protein and starch and functional properties of bambara groundnut (Voandzeia subterranea) seed. Research Journal of Agriculture and Biological Sciences 3, 24-34.