Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | March 1, 2022

VIEWS 5
| Download

Effect of methyl jasmonate on the metabolism of phenolic compounds in cotton (Gossypium Hirsutum L., CV. W471B)

Mohamed Anderson Yeo, Dan Gbongue Lucien Gogbeu, Achi Laurent N’cho, Tanoh Hilaire Kouakou, Lacina Coulibaly

Key Words:


Int. J. Biosci.20(3), 134-143, March 2022

DOI: http://dx.doi.org/10.12692/ijb/20.3.134-143

Certification:

IJB 2022 [Generate Certificate]

Abstract

The aim of this study was to understand the stimulation of plants’ natural defenses in general and by methyl jasmonate. It is thus right that we followed the influence of the latter on the metabolism of phenolic compounds of cotton leaves (Gossypium hirsutum L. Cv. W471B). It is clear that the phenol content, which is 48.16 mg/g of dry matter at 2.5 mM of MeJA spray, increases to reach its maximum at 5 mM, i.e., 64.33 mg/g of dry matter. PAL is the enzyme that participates the most in the biosynthesis of total phenols following the treatment of cotton leaves with 5 mM MeJA. On the other hand, the activity of polyphenoloxidase (PPO), which was initially 2.83 ΔDO /g DM in the untreated control leaves, fell to 1.81 ΔDO /g DM in the leaves treated with 5 mM MeJA, i.e., a 36.04% decrease in phenol degradation activity. Peroxidase (POD) activity also decreased from 2.5 ΔDO /g DM in control leaves to 0.25 ΔDO /g DM in the leaves sprayed with 5 mM MeJA, i.e., a decrease in phenol degradation activity of 90%. TAL is, therefore, the enzyme that participates more in the phenol degradation activity following the application of 5mM MeJA on cotton leaves.

VIEWS 5

Copyright © 2022
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Effect of methyl jasmonate on the metabolism of phenolic compounds in cotton (Gossypium Hirsutum L., CV. W471B)

Al Balkhi M. 2008. Exploration phytochimique de la voie de biosynthèse des alcaloides tropaniques chez les racines transgéniques de Datura innoxia Mill. Thèse de Doctorat, Université de Picardie, Jules Verne.

Al Shamsi SR, Rabert GA, Kurup SS, Alyafei MAM, Jaleel A. 2021. Biochemical Changes and Antioxidant Variations in Date Palm (Phoenix dactylifera L.) Varieties during Flower Induction and Development. Plants 10(11), 2550.

Anonyme. 2013. Association des Industrie de la Filière Oléagineuse (AIFO). www.aifo-uemoa.org

Bajguz A, Hayat S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant physiology and biochemistry 47(1), 1-8.

Bouarab K, Adas F, Gaquerel E, Kloareg B, Salaun JP, Potin P. 2004. The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiology 135(3), 1838-1848.

Cano W. 2011. Novas determinações sobre as questões regionale urbana após 1980. Revista Brasileira de Estudos Urbanos e Regionais (RBEUR), 13(2), 27-53. https://doi.org/10.22296/2317-1529.2011v13n2p27

Choi DW, Jung J, Ha YI, Park HW, In DS, Chung HJ, Liu JR. 2005. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports 23(8), 557-566.

Constabel CP, Bergey DR, Ryan CA. 1995. Systemic activates synthesis of wound inducible tomato leaf polyphénols oxidase via octadecanoid defence signalling pathway. Proceedings of the National Academy of Sciences 92, 407-411, 275-283.

Elad Y, Cytryn E, Harel YM, Lew B, Graber ER. 2011. The biochar effect: plant resistance to biotic stresses. Phytopathologia Mediterranea 50(3), 335-349.

El-Habbak M. 2013. Overexpression/silencing of selected soybean genes alters resistance to pathogens. University of Kentucky.

FAO. Food and Agriculture Organisation. 1991. Production Year Book 44, 184.

Heil M, Ton J. 2008. Distance Signalling en plant defense trends. Plant Science 13, 264-72.

Kanzan K, Manners J. 2008. Jasmenale Signaling, toward an integrated view. Plant physiology 146, 1459-68.

Konan YK. 2006. Métabolisme des composés phénoliques au cours de l’infection des vitroplants et des cals de cotonnier (Gossypium hirsutum L. cv. R405-2000) par Fusarium oxysporium f. sp. Vasinfectum, agent causal de la fusariose. Mémoire de DEA, Université de Cocody, Abidjan, Côte d’Ivoire. 47 p.

Kouakou TH. 2003. Contribution à l’étude de l’embryogenese somatique chez le cotonnier (Gossypium hirsutum L.): Evolution de quelques parametres biochimiques au cours de la callogen,èse et de cultures de suspensions cellulaires. Thèse doctorat troisième cycle. Physiologie végétale. UFR Biosciences .Université de Cocody (Abidjan Côte d’Ivoire). p 147.

Makoi JH, Ndakidemi PA. 2007. Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. African Journal of Biotechnology 6(12).

Munro JM. 1987. Cotton Longman and Technical, England, p 436.

Ngalani JA, Signoret A, Crouzet J. 1993. Partial purification and properties of plantain polyphenol oxidase. Food Chemistry 48(4), 341-347.

Pettigrew WT. 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia plantarum 133(4), 670-681.

Pontier D, Balagué C, Roby D. 1998. The hypersensitive response. A programmed cell death associated with plant resistance. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie, 321(9), 721-734.

Rachuonyo HA, Pond WG, McGlone JJ. 2002. Effects of stocking rate and crude protein intake during gestation on ground cover, soil-nitrate concentration, and sow and litter performance in an outdoor swine production system. Journal of animal science 80(6), 1451-1461.

Regnier T. 1994. Composés phénoliques du blé dur (Triticum turgidum L. var durum); Variation au cours du développement et de la maturation du grain relation avec l’apparition de la moucheture. Thèse de sciences et technique de langue doc, base de la production végétale, Univ. Montpellier II, Fr., p 177.

Rehman F, Khan FA, Badruddin SMA. 2012. Role of phenolics in plant defense against insect herbivory. In Chemistry of phytopotentials: health, energy and environmental perspectives (p 309-313). Springer, Berlin, Heidelberg.

Santimone M. 1973. Mécanismes des réactions d’oxydation péroxydasique. Thèse d’Etat, Université d’AIX Marseille II. N° AO. 8321.

Shahrajabian MH, Sun W, Cheng Q. 2020. Considering white gold, cotton, for its fiber, seed oil, traditional and modern health benefits.

Singh N, Singh RK, Bhunia AK, Stroshine RL. 2002. Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157: H7 on lettuce and baby carrots. LWT-Food Science and Technology 35(8), 720-729.

Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology 299, 152-178.

Stoddard FL, Nicholas AH, Rubiales D, Thomas J, Villegas-Fernández AM. 2010. Integrated pest management in faba bean. Field crops research 115(3), 308-318.

Vaissayre M. 1994. Dix années d’expérimentation pour la protection du cotonnier en Côte d’Ivoire (1981-1990). Doc. CIRAD/CA 3(93), 1-57.

Vallad GE, Goodman RM. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop science 44(6), 1920-1934.

Stoddard FL, Nicholas AH, Rubiales D, Thomas J, Villegas-Fernández AM. 2010. Integrated pest management in faba bean. Field crops research 115(3), 308-318.

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background