Effect of molybdenum and nitrogen on Phaseolus vulgaris L., Cicer arietinum L. and Lens culinaris M. seedlings grown under salt stress
Paper Details
Effect of molybdenum and nitrogen on Phaseolus vulgaris L., Cicer arietinum L. and Lens culinaris M. seedlings grown under salt stress
Abstract
The leguminous constitute an important food diet component especially in developing countries, they represent 90% of the global consumption, and they are very rich in proteins and relatively adapted to the Mediterranean climate. Soil nutrient deficiencies and salinity are the main factors which reduce plant production in the semi-arid and arid areas around the world. The plant material used is composed by three species from Fabaceae; Phaseolus vulgaris L., Cicer arietinum L. and Lens culinaris M. seedlings that were grown in pots under different concentrations of NaCl (3 g/l, 6 g/l, 9 g/l), molybdenum (0,2 ppm) added as ammonium molybdate and nitrogen added as potassium nitrate (0,02 g/l). The fresh shoot, chlorophyll content and nitrate reductase activity were analyzed in order to estimate the effect of molybdenum (Mo) and nitrogen (N) on salt stressed plants. The effect of both molybdenum and nitrogen on lentil has not been well studied and especially for Algerian legumes This work shows the importance of molybdenum and nitrogen added to irrigation water to avoid the negative effect of sodium chloride and to enhance legume species tolerance to salt stress.
Abd El Samad HM, El Komy HM, Shaddad MAK, Hetta AM. 2005. Effect of molybdenum on nitrogenase and nitrate reductase activities of wheat Inoculated with Azospirillum brasilense grown under drought stress. General and Applied Plant Physiology 31(1-2), 43-54.
Abdelaguerfi A, Ramdane SA. 2003. Evaluation Des Besoins En Matière De Renforcement Des Capacités Nécessaires A La Conservation Et L’utilisation Durable De La Biodiversite Importante Pour L’agriculture. Bilans des Expertises sur «La Biodiversité Importante pour l’Agriculture en Algérie » MATE-GEF/PNUD : Projet ALG/97/G31. P11.
Ahmed S. 2009. Effect of soil salinity on the yield and yield components of Mung bean. Pakistan Journal of Botany 4(1), 263-268.
Ashraf M, Iram A. 2005. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200, 535–546. http://dx.doi.org/10.1016/j.flora.2005.06.005
Bell W, Edwards DG, Asher CJ. 1989. External calcium requirements for growth and nodulation of six tropical food legumes grown in flowing solution culture. Australian Journal of Agricultural Research 40, 85-96.
Ben Naceur M, Ben Salem M, Rahmoune C, Chorfi A, El Jaafari S, Paul R. 1998. Etude comparée du comportement de quelques variétés anciennes et quelques variétés nouvelles de blé dur (Triticum durum Defsf.) sous contrainte hydrique. Annales de l’INRA, 71, 251-273.
Bishop PE, Premakumar R. 1992. Alternative Nitrogen Fixation Systems. In Biological Nitrogen Fixation. Stacey, G., Roberts, G.P. and D.J. Evans, (Eds.) New York: Chapman & Hill, 736-762.
Bortels H.1930. Molybdän als Katalysator bei der biologischen Stickstoffbindung. Archiv für Mikrobiologie 1, 333–342.
Bouzid S, Rahmoune C. 2012. Enhancement of Saline Water for Irrigation of Phaseolus vulgaris L. Species in Presence of Molybdenum. Procedia Engineering 33, 168 – 173. http://dx.doi.org/10.1016/j.proeng.2012.01.1190
Cordovilla MP, Ligero F, Lluch C. 1994.The effect of salinity on nitrogen fixation and assimilation in Vicia faba. Journal of Experimental Botany 45, 1483-1488. http://dx.doi.org/10.1093/jxb/45.10.1483
Cornillon P, Palloix A. 1997. Influence of sodium chloride on the growth and mineral nutrition of pepper cultivars. Journal of Plant Nutrition 20, 1085-1094. http://dx.doi.org/10.1080/01904169709365320
Eckardt NA. 2005. Moco mojo: crystal structure reveals essential features of Eukaryotic assimilatory nitrate reduction. The Plant Cell 17, 1029–1031. http://dx.doi.org/10.1105/tpc.105.032326
Edje OT, Mughogho LK, Rao YP. Msuku WAB. 1980. Bean production in Malawi. In Potential for field beans in Eastern Africa. Proceedings of a Regional Workshop help in Lilongwe, Malawi, 9-14.
Garg N, Singla R. 2009. Variability in the response of chickpea cultivars to short-term salinity, in terms of water retention capacity, membrane permeability and osmo-protection. Turkish Journal of Agriculture and Forestry 33, 57-63.
Graham RD, Stangoulis JRS. 2005. Molybdenum and disease. In: Mineral nutrition and plant diseases (Dantoff L, Elmer W, Huber D. Eds) St Paul, MN: APS Press.
Halperin ST, Gilroy S, Lynch JP. 2003. Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root hairs of Arabidopsis thaliana L. Journal of Experimental Botany 54, 1269-1280. http://dx.doi.org/10.1093/jxb/erg134
Hassan F. 2006. Heterologous expression of a recombinant chitinase from Streptomyces olivaceoviridis ATCC 11238 in Transgenic Pea (Pisum sativum L.). Doctorate thesis, University of Damas, Syria.
Hristoskova MV, Geneva M, Stancheva I. 2006. Response of pea plant (Pisum sativum L.) to reduce supply with molybdenum and copper. International Journal of Agriculture and Biology 08 (2), 218-220.
Jabeen N, Ahmad R. 2011. Foliar Application of Potassium Nitrate Affects the Growth and Nitrate Reductase Activity in Sunflower and Safflower Leaves under Salinity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2), 172-178.
Jain HK. 1977. Centers of diversity, genetics variability and components of yield and plant type in chickpea. F.A.O. Plant protection and production, 9 p.) Journal of Experimental Botany 53(375), 1689-1698.
Kaneez F, Nazir H, Pir FA, Mohd M. 2013. Effect of nitrogen and phosphorus on growth and yield of Lentil (Lens culinaris). Elixir Applied Botany 57, 14323-14325.
McKinney C. 1941. Absorption of light by chlorophyll solution. Journal of Biological Chemistry 140, 315-322.
Meloni DA, Gulotta MR, Martínez CA, Oliva MA. 2004. The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Brazilian Journal of Plant Physiology 16(1), 39-46. http://dx.doi.org/10.1590/S1677042020040001000 06
Mendel RR, Bittner F. (2006). Cell biology of molybdenum. Biochimica Biophysica Acta 1763(7), 621-35. http://dx.doi.org/10.1016/j.bbamcr.2006.03.013
Munns DN. 1970. Nodulation of Medicago sativa in solution culture. V. Calcium and pH requirements during infection. Plant Soil 32, 90-102.
Naman F, Zaoui D, Ouaaka A, Chraïbi A. 1997. Mesures in vivo et in vitro de l’activité nitrate réductase dans les feuilles de la betterave à sucre (Beta vulgaris var. Maghribel). Actes Institut Agronomique et vétérinaire 17(2), 95-101.
Rahmoune C, Ben Naceur M, Cheikh-M’Hamed H, Maalam S. 2008. Les indicateurs précoces de tolérance à la salinité chez les blés durs. Biotech2008. XIes Journées Scientifiques du réseau “Biotechnologies végétales / Amélioration des plantes et sécurité alimentaire” de l’Agence universitaire de la Francophonie. Rennes, France. p.151.
Sepehr MF, Ghorbanly M, Amini F. 2012. Effect of water stress on nitrate reductase activity and nitrogen and phosphorus content in Cuminum cyminum L. Pakistan Journal of Botany 44(3), 899-903.
Shannon M, Crieve M, Francois LE. 1994. Whole-plant response to salinity. In Plant Environment Interactions, Ed. R.E. Wilkinson, Marcel Dekker Inc., New York, 199-244.
Sidari M, Muscolo A, Anastasi U, Preiti G and Santonoceto C. 2007. Response of four genotypes of lentil to salt stress conditions. Seed Science and Technology 35, 497-503. http://dx.doi.org/10.15258/sst.2007.35.2.24
Silveira JAG, De Cardoso B, Melo ARB, De Viegas RA. 1999. Salt-induced decrease in nitrate uptake and assimilation in cowpea plants. Brazilian Journal of Plant Physiology 11(2), 77-82. http://dx.doi.org/10.1016/S0098-8472(01)00095-8
Singla R, Garg N. 2005. Influence of salinity on growth and yield attributes in chickpea cultivars. Turkish Journal of Agriculture and Forestry 29, 231-235.
Soussi M, Ocana A, Lluch C. 1998. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany 49, 1329-1337. http://dx.doi.org/10.1093/jxb/49.325.1329
Tejera NA, Soussi M, Lluch C. 2006. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environmental and Experimental Botany 58, 17–24. http://dx.doi.org/10.1016/j.envexpbot.2005.06.007
Turk MA, Tawaha ARM, Lee KD. 2004. Seed germination and seedling growth of three lentil cultivars under moisture stress. Asian Journal of Plant Sciences 3, 394-397. http://dx.doi.org/10.3923/ajps.2004.394.397
Van Hoorn J W, Katerji N, Hamdy A, Mastrorilli M. 2000. Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agricultural Water Management 51, 87-98. http://dx.doi.org/10.1016/S0378-3774(01)00114-7
Ventura Y, Wuddineh WA, Ephrath Y, Shpigel M, Sagi M. 2010. Molybdenum as an essential element for improving total yield in seawater-grown Salicornia europaea L. Scientia Horticulturae 126, 395–401. http://dx.doi.org/10.1016/j.scienta.2010.07.015
Vincent R. 2006. Recherche et étude de marqueurs moléculaires de la réponse au stress chez l’algue brune Laminaria digitata. Thèse de doctorat. Biologie. Université de Rennes 1. 237p. France.
Welfare K, Yeo AR, Flowers TJ. 2002. Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environmental Pollution 120, 397-403. http://dx.doi.org/10.1016/S0269-7491(02)00109-4
Weng BQ, Huang DF, Xiong DZ, Wang YX, Luo T, Ying ZY, Wang HP. 2009. Effects of Molybdenum Application on Plant Growth, Molybdoenzyme Activity and Mesophyll Cell Ultrastructure of Round Leaf Cassia in Red Soil. Journal of Plant Nutrition 32(11), 1941 – 1955. http://dx.doi.org/10.1080/01904160903242409
Yu M, Hu CX, Wang YH. 2006. Effect of Molybdenum on the intermediate of chlorophyll biosynthesis of winter wheat cultivars under low temperature. Agricultural Sciences in China 5(9), 670-677.
Zimmer W, Mendel R. 1999. Molybdenum Metabolism in Plants. Plant biology 1, 160-168. http://dx.doi.org/10.1055/s-2007-978502
Zurayk R, Adlan M, Baalbaki R, Saxena MC. 1998. Interactive effects of salinity and biological nitrogen fixation on chickpea (Cicer arietinum L.) growth. Journal of Agronomy and Crop Science 180, 249-258.
Bouzid Salha, Rahmoune Chaabane (2016), Effect of molybdenum and nitrogen on Phaseolus vulgaris L., Cicer arietinum L. and Lens culinaris M. seedlings grown under salt stress; IJB, V8, N6, June, P34-42
https://innspub.net/effect-of-molybdenum-and-nitrogen-on-phaseolus-vulgaris-l-cicer-arietinum-l-and-lens-culinaris-m-seedlings-grown-under-salt-stress/
Copyright © 2016
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0