Effect of sandfish (Scincus scincus) in serum biochemical parameters evolution in the wistar rats
Paper Details
Effect of sandfish (Scincus scincus) in serum biochemical parameters evolution in the wistar rats
Abstract
The uncontrolled diet certainly contributes to the epidemic of metabolic syndrome. The high incidence of adverse drug effects means that the population relies on natural medicine for treatment. In the region of Oued Souf (south-east of Algeria), sand fish is widely recognized as a traditional remedy against various metabolic diseases. Several ethno pharmacological studies have been devoted to the effect of certain plants on biochemical parameters. However, no study has been done on the therapeutic effect of certain animals, especially on sandfish. The objective of this study is to evaluate the effect of sandfish (Scincus scincus) on the evolution of certain serum biochemical parameters and to look for possible toxic effect in experimental rats. Fifteen (15) male Wistar rats are grouped into three groups (5 rats each): control, fed by 12% of the body of the sand fish, and fed by 12% of the head of the sandfish. The effect of skink on these parameters was evaluated after 6 weeks of treatment. The results reveal that both parts of the skink have a positive effect on the regulation of serum parameters. Administration of the skink showed a very highly significant increase in iron (3.21 mg / l); a very highly significant decrease in total cholesterol (0.71 g / l), triglycerides (0.48 g / l) and TGO (248 u / l), with no significance for blood glucose (0.77 mg / dl) and TGP (45.1 u / l) compared to control. The results obtained also show an increase in urea (0.5 g / l) and a decrease in serum creatinine (6.08 g /l). this study we found that the sandfish has a cholesterol-lowering and hypotriglyceridemia effect
Adlouni A, Cherki M, Khalil A, El Messal M. 2009. P385 Argan oil may reduce cardiovascular risk associated with obesity. Atherosclerosis Supplements, 10(2), e695. https://doi.org/10.1016/S1567-5688(09)70680-4
André J. 2010. Le métabolisme du cholestérol et des stéroides. Omniscience 19, 322-327.
Azzi R. 2007. Contribution to research on the antidiabetic effects of alkaloids and glycosides cucurbitacins extracted from the seeds of colocynth (Citrullus colocynthis) in rats made diabetic by streptozotocin. Memory of majors, University from Tlemcen.
ASBH. 2015. Les reins et l’insuffisance rénale. Journée Mondiale Du Rein, 187- 199.
Ashima P, Abhishek S, Rathore V, Pathak R. 2012. Role of Zinc on Antioxidative Enzymes and Lipid Peroxidation in Brain of Diabetic Rats. Journal of Drug Metabolism and Toxicology 3(3), 5. http://dx.doi.org/10.4172/2157-7609.1000122
Bellahcen S, Mekhfi H, Ziyyat A, Legssyer A, Hakkou A, Aziz M, Bnouham M. 2012. Prevention of chemically induced diabetes mellitus in experimental animals by virgin argan oil. Phytotherapy Reserch 26, 180-185. http://dx.doi.org/10.1002/ptr.3524.
Brunner LS, Suddarth DS. 2006. Soins infirmiers en médecine et en chirurgie 2. Fonctions respiratoire, cardiovasculaire et hématologique. Canada: De Boeck. p 680.
Deepmala J, Deepak M, Srivastav S, Sangeeta S, Kumar SA, Kumar SS. 2013. Protective effect of combined therapy with dithiothreitol, zinc and selenium protects acute mercury induced oxidative injury in rats Journal of Trace Elements in Medicine and Biology 27(3), 249-256. https://doi.org/10.1016/j.jtemb.2012.12.00.3
Derouiche S, Abbas K, Djermoune M. 2017. Polysaccharides and ascorbic acid content and the effect of aqueous extract of Portulaca oleracea in highfat diet-induced obesity, dyslipidemia and liver damage in albino wistar rats. Algerian Journal of Arid Environment (2), 11-11.
Ezzati M, Riboli E. 2013. Behavioral and dietary risk factors for noncommunicable diseases. New England Journal of Medicine 369(10), 954-964. http://dx.doi.org/10.1056/NEJMra1203528
Groth W, Gränzer W. 1975. The influence of transport stress on the activity of GOT, GPT, LDH and CPK in the serum of calves. Zentralblatt fuer Veterinaermedizin. Reihe A (Germany, FR).
Fleurentin J, Joyeux M. 1990. The use of in vivo and in vitro assays in the evaluation of antihepatotoxic properties of natural substances. Paris. ORSTOM, p 248.
Hambræus L. 1999. Animal-and plant-food-based diets and iron status: benefits and costs. Proceedings of the Nutrition Society 58(2), 235-242. https://doi.org/10.1017/S0029665199000324
Landry G, Ouimet M, Côté D, Pelletier K. 2012. L’alimentation. Lettres en Main.41 p.
Moulin B, Peraldi MN. 2016. Néphrologie. Ellipses, 7ed.13p. http://cuen.fr/umvf/spip.php?article.15
Nelson SD. 1995. Mechanism of the formation and disposition of reactive metabolites that can cause acute liver injury. Drug Metabolism Reviews 27, 147-177. https://doi.org/10.3109/03602539509029821
Pascal F, Edouard A, Nantiaa N, Thomas K, Paul F. 2001. Evaluation of the effect of Carpolobia alba (Polygalaceae) aqueous extract on male reproductive function in rats. Journal of Applied Animal Research 39(1), 80-84. https://doi.org/10.1080/09712119.2011.558676
PEN. 2005. (Practice-Based Evidence in Nutrition). Augmentez votre apport en fer. Les diététistes du Canada. https://www.pennutrition.com/ResourcesToolsaspx?trid
Selles C, Medjdoub H, Dib MA, Zerriouh M, Tabti B. 2012. Anti-diabetic activity of aqueous root extract of Anacyclus pyrethrum L. in streptozotocin-induceddiabetic rats. Journal of Medicinal Plants Research 6(16), 3193-3198. https://doi.org/10.1016/S2222-1808(14)60501-6
Sofi F, Abbate R, Gensini GF, Casini A. 2010. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. The American journal of clinical nutrition 92(5), 1189-1196. https://doi.org/10.3945/ajcn.2010.29673.
Toumi I, Adamou A, Becila S, Rgiloufi R. 2017a. Composition et valeur nutritionnelle de la viande et la farine du scinque officinal (Scincus scincus) en Algérie. lrrd.cipav.org.com.
Toumi I, Adamou A, Becila S. 2017b. La consommation du poisson de sable (Scincus scincus) dans la région du Souf (Erg oriental, Algérie): motivation et modalités de préparation. Cahiers de nutrition et de diététique 52(1), 41-44. http://dx.doi.org/10.1016/j.cnd.2016.10.003
Whelton A, Watson AJ, Rock RL. 1994. Nitrogen Metabolites and Renal Function, Tietz Textbook of Clinical Chemistry, Burtis, C.A. and Ashwood E.R. ed., W.B. Saunders Co. p 1513-1575.
Willcox D C, Willcox B J, Todoriki H, Suzuki M. 2009. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. Journal of the American College of Nutrition, 28(sup4), 500S-516S.
William LA, Jeffrey ML, Glen CS, George LF, Patrick WB, James WS. 1999. Influence of diet on hematology and serum zinc intoxication in mallard. Center for Wild Life Ecology, Illinois Natural History Survey, p 38-47.
Zamani M, Rahimi AO, Mahdavi R, Nikbakhsh M, Jabbari MV, Rezazadeh H, Delazar A, Nahar L, Sarker SD. 2007. Assessment of antihyperlipidemic effect of Citrullus colocynthis. Revista Brasileira de Farmacognosia. Brazilian Journal of Pharmacognosy 17(4), 492-496.
Ikram Toumi, Ifriqya Medila, Abdelkader Adamou, Samira Becila, Samira Abid, Houda Madaoui (2019), Effect of sandfish (Scincus scincus) in serum biochemical parameters evolution in the wistar rats; IJB, V14, N4, April, P225-231
https://innspub.net/effect-of-sandfish-scincus-scincus-in-serum-biochemical-parameters-evolution-in-the-wistar-rats/
Copyright © 2019
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0