Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | August 1, 2011

| Download

Effect of spraying TiO2 nano particles on some of physiological and chemical parameters in maize (Zea mays L.)

Payam Moaveni, Mohammad Lotfi, Hosseein Aliabadi Farahani, Kasra Maroufi

Key Words:

Int. J. Biosci.1(4), 63-67, August 2011


IJB 2011 [Generate Certificate]


An experiment was carried out using a factorial on the basis of completely randomized block design. The factor of studied included of TiO2 Nano particles spraying affected on some physiological and chemical parameters in maize (Zea mays L.). The factors were spraying in growth stages (stem elongation and 4 leaves stage) and five levels of Tio2 including: control, Bulk Tio2, 0.01, 0.02, and 0.03 percentage). The characters measured were: Super oxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPX) and Malon dialdehyde (MDA). The results showed that the effect of TiO2 Nano particles was significant on SOD, CAT, GPX and MDA in P ≤ 0.01. Mean comparison showed that the highest SOD (1.588 mol/g), CAT (0.206 mol/g), GPX (0.140 mol/g) and MDA (0.140 mol/g) were achieved by Nano particles 0.03% percentage.


Copyright © 2011
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Effect of spraying TiO2 nano particles on some of physiological and chemical parameters in maize (Zea mays L.)

Ahmed M, Attia YA. 1995. Aerogels materials for photocatalytic detoxification of cyanide wastes in water. J. Non-cryst. Solids 186, 402-407.

Akhtar MK, Xiong Y, Pratsinis SE. 1991. Vapor Synthesis of Titania Powder by Titanium Tetrachloride Oxidation. Aiche J. 37, 1561-1570.

Ali FM. 1991. Maize agronomy. Annual report 1990/91, Agricultural Research Corporation, Gezira Research Station., Wad Medani, Sudan.

Atta AK, Biswas PK, Ganguli D. 1992. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Mater. Lett. 15, 99–103.

Ayllon JA, Figueras A, Garelik S, Spirkova L, Durand J, Cot L. 1999. Preparation of tio2 powder using titanium isopropoxide decomposition in a plasma enhanced chemical vapor deposition (pecvd) reactor. J. Mater. Sci. Lett. 18, 1319-1321.

Barbe   CJ, Arendse F, Gratzel M. 1997. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Amer. Ceram. Soc. 80(12), 3157-3171.

Barringer EA, Bowen HK. 1985. High-Purity, Monodisperse TiO2 Powders by Hydrolysis of Titanium Tetraethoxide. 1. Synthesis and Physical Properties-Longmuir 1, 414-420.

Bischoff BL, Anderson MA. 1995. Peptization process in the sol–gel preparation of porous anatase (TiO2). Chem. Mater. 7, 1772.

Cheng   H,    Ma    J,    Zhao    Z,    Qi    L.    1995. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem.Mater. 7, 663-671.

Chen YF, Lee CY, Yen MY, Chiu HT. 2003. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. J. Photochem. Photobiol. A. Chem. 163, 281-287.

De Groot FMF, Fuggle JC. 1990. L2;3 x-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry,” Physics Review B 41(2), 928-937.

Ding XZ, Liu XH. 2004. The synthesized powder was examined by X-ray diffraction. J. Alloys and Compounds 248, 143-145.

Dhage SR, Choube VD, Samuel V, Ravi V. 2004. Synthesis of nanocrystalline TiO2  at 100° C. Mater. Lett. 58, 2310-2313.

FAO. 1998. Food and Agriculture Organization of the United Nations. Quarterly Bulletin Statistic-cs, 11(3/4).

Ferroni M, Guidi V, Martinelli G, Nelli P. 1996. Characterization of a sputtered molybdenum oxide thin film as a gas sensor. Nanostructured Mater 7, 709.

Howe M. 1997. Grant (Ed), Kirk-Othmer Encyclopedia of Chemical Technology, vol. 24, John Wiley and Sons, Inc, p. 225.

Kim EJ, Hahn SH. 2001. Microstructural changes of microemulsion-mediated TiO2 particles during calcination. Materials Letters 49, 244-249.

Litter  MI,  Navio  JA,  Photochem  J.  1994. Comparison of the photocatalytic efficiency of TiO2, iron oxides and mixed Ti(IV)/Fe(III) oxides. Photobiol. A: Chem. 84, 183-193.

Palmisano L, Augugliaro V, Sclafani A. 1988. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J. Phys. Chem.92, 6710-6713.

Poehlman JM. 1983. Field Crops. AVI Publishing Company. New York, (2nd ed), p. 486.

Rekoske JE, Barteau MA. 1997. Isothermal reduction kinetics of titanium dioxide-based materials. J. Phys. Chem. B 101, p. 1113.

Wang Y, Cheng H, Hao Y, Ma J, Li W, Cai S, Mater J. 1999. Preparation, characterization and photo-electric behaviors of Fe(III) doped TiO2 nanoparticles. J. Mater. Sci. 34, 3721–3729.

Wang CC, Zhang Z, Ying JY. 1997. NanoStructured Mater. 9, 583.

Yang J, Mei S, Ferreira JMF. 2001. Microstructural Evolution in Sol-gel Derived P2O5-Doped. Mater. Sci. and Eng. C 15, 183-185.

Zeng T, Qiu Y, Chen L. 1998. Microstructure and phase evolution of TiO2 precursors prepared by peptization-hydrolysis method using polycarboxylic acid as peptizing agent. Materials Chemistry and Physics 56, 163-170.

Zhang HZ, Banfield JF. 1999. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am. Mineral. 84, 528.

Zhang HZ, Banfield JF, Phys J. Chem.B. 2000. Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. 104, 3481.


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background