Effect of the combination Rhizophagus intraradices and 50% of NPK on maize (Zea mays L.) growth and yield in central Benin

Paper Details

Research Paper 01/01/2020
Views (435) Download (81)
current_issue_feature_image
publication_file

Effect of the combination Rhizophagus intraradices and 50% of NPK on maize (Zea mays L.) growth and yield in central Benin

Sylvestre A Assogba, Nadege A Agbodjato, Nestor Ahoyo Adjovi, Haziz Sina, Pâcome A Noumavo, Hafiz AA Salami, Abdel D Koda, Ricardos Aguegue, Marcel Adoko, Farid Bade, Aude E Kelomey, Adolphe Adjanohoun, Lamine Baba-Moussa
Int. J. Agron. Agri. Res.16( 1), 1-15, January 2020.
Certificate: IJAAR 2020 [Generate Certificate]

Abstract

The growth and grain yield of maize (Zea mays), variety 2000 SYN EE-W were assessed in response to combined inoculation of native arbusular mycorrhizal fungus (AMF) Rhizophagus intraradices with NPK fertilizer in rhizosphere of ferruginous soil of Benin. The experimental design was a randomized complete block of three treatments (CTL = Peasant Practice (without AMF, with mineral fertilizers); Ri½NPK = R. intraradices + 50%N15P15K15; NPK = 100% N15P15K15) with three repetitions. Each elementary plot was 4m length and 3.2m width. After opening a seed hole, two maize seeds previously coated or not with Rhizophagus intraradices strains the day before were put into the hole. Seeding was done by keeping a distance of 0.80m x 0.40m and a density of 31.250plants/ha. The maximum heights, larger diameters and leaf area, the highest dry aerial and underground dry biomass of plants, including the best yield in maize seeds were recorded with R. intraradices treatment combined with 50% of NPK with respective increases of 36.80%, 82.89%, 88.73%, 91.74%, 92.22% and 38.14% compared to the values obtained with Peasant practices. R. intraradices produced 2 spores/g of soil and hold averages of 51.67% and 6.17% respectively for mycorrhization frequency and intensity. These results portend the use of this strain as an alternative solution to increase the productivity of maize in Benin.

VIEWS 101

Adjanohoun A, Baba-Moussa L, Glèlè Kakaï R, Allagbé M, Yèhouénou B, Gotoéchan-Hodonou H, Sikirou R, Sessou P, Sohounhloué D. 2011. Caractérisation des rhizobactéries potentiellement promotrices de la croissance végétative du maïs dans différents agrosystèmes du Sud-Bénin. International Journal of Biology and Chemical Sciences 5, 433-444.

Agbodjato NA, Noumavo PA, Adjanohoun A, Agbessi L, Baba-Moussa L. 2016. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.) Hindawi Publishing Corporation Biotechnology Research International Volume 2016, Article ID 7830182, 11 pages http://dx.doi.org/10.1155/ 2016/7830182

Aguégué RM, Noumavo PA, Dagbenonbakin G, Baba-Moussa L. 2017. Arbuscular Mycorrhizal Fertilization of Corn (Zea mays L.) Cultivated on Ferrous Soil in Southern Benin. Journal of Agricultural Studies 5, 99-115.

Alqarawi AA, Hashem A, Abd-Allah EF, Alshahrani TS, Huqail AA. 2014. Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biologica Hungarica 65(1), 61-71. https:// doi.org/10.1556/ ABiol 65.2014.1.6

Assogba S, Noumavo PA, Dagbenonbakin G, Agbodjato NA, Akpode C, Koda DA, Aguegue RM, Bade F, Adjanohoun A, Alejandro FR, de la Noval Pons Blanca M, Baba-Moussa L. 2017. Improvement of maize productivity (Zea mays l.) By mycorrhizal inoculation on ferruginous soil in center of Benin. International Journal of Sustainable Agricultural Research 4(3), 63-76. DOI: 10.18488 /journal.70.2017.43.63.76

Balogoun I, Saïdou A, Ahoton LE, Adjanohoun A, Amadji G, Ezui GL, Youl S, Mando A, Igué AM, Sinsin BA. 2013. Détermination des formules d’engrais minéraux et des périodes de semis pour une meilleure production du maïs (Zea mays L.) au Sud et au Centre Bénin. Bulletin de la Recherche Agronomique du Bénin 1-11

Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF. 2013. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front. Plant Sciences 4, 426. DOI: 10.3389/fpls.2013.00426

Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballest MC, Carvajal M. 2012. Arbuscular mycorhhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annals of Botany 109, 1009-1017.

Batamoussi MH, Oga CA, Sèkloka E, Saïdou A. 2014. Effects of different formulations of mineral fertilizers on the agronomic parameters of maize (Zea mays) in the climate change conditions of central Benin. International Journal of Science and Advanced Technology 4(6), 31-35.

Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I. 2017. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports 7, 4686. DOI: 10.1038/s41598-017-04959-0

Berruti A, Lumini E, Balestrini R, Bianciotto V. 2016. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Frontiers in Microbiology 6, 1-13. DOI: 10.3389/ fmicb. 2015. 01559

Bini D, Alcantara dSC, da Silva Mylenne CP, Bonfim JA, Cardoso EJBN. 2018. Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Scientia Agricola 75(2), 102-110. DOI: http://dx.doi.org/10.1590/1678-992X-2016-0337

Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN. 2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist 199, 188-202. DOI: 10.1111/nph.12234

Boudoudou HR, Hassikou A, Ouazzani Touhami A, Bado A, Douira. 2009. Paramètres Physicochimiques et Flore Fongique des Sols de Rizières Marocaines. Bulletin de la Société de Pharmacie de Bordeaux 148(1-4), 17-44.

Bray RH, Kurtz TL. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Science 59(1), 39-45.

Caruso G, Golubkina NA, Seredin TM, Sellitto VM. 2018. Utilization of arbuscular-mycorrhyzal fungi in Allium production. Vegetable Crops of Russia 3, 93-98. (In Russian)

Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z. 2017. Combined Inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology 8, 25-16. DOI: 10.3389/ fmicb.02516

Chukwukwa KS, Okechukwu UK, Umukoro BO, Obiakara MC. 2017. Arbuscular mycorrhiza fungi, NPK (15-15-15) and cow dung sustainable interaction in cassava output and food security. Advenve in Plants Agricultural Research 7(4), 328-335. DOI: 10.15406 / apar.2017.07.00262.

Cozzolino V, Di Meo V, Piccolo A. 2013. Impact of arbuscular mycorrhizal fungi applications on maize pro­duction and soil phosphorus availability. Journal of Geochemical Exploration 129, 40-44.

Diallo-Diagne NH, Assigbetse K, Sall S, Masse D, Bonzi M, Ndoye I, Chotte JL. 2016. Response of soil microbial properties to long-term application of organic and inorganic amendments in a tropical soil (Saria, Burkina Faso). Open Journal Soil Science 6, 21-33.

Dias T, Correia P, Carvalho L, Melo J, Varennes A, Cruz C. 2018. Arbuscular mycorrhizal fungal species differ in their capacity to overrule the soil’s legacy from maize monocropping. Applied Soil Ecology 125, 177-183. DOI: 10.1016/j. apsoil. 2017. 12.

Dunbabin V, Armstrong R, Officer S, Norton R. 2009. Identifying fertiliser management strategies to maximise nitrogen and phosphorus acquisition by wheat in two contrasting soils from Victoria, Australia. Australian Journal of Soil Research 47, 74-90.

Duponnois R, Ramanankierana H, Hafidi M, Baohanta R, Baudoin E, Thioulouse J, Lebrun M. 2013. Des ressources végétales endémiques pour optimiser durablement les opérations de réhabilitation du couvert forestier en milieu méditerranéen et tropical : exemple des plantes facilitatrices vectrices de propagation des champignons mycorhiziens. Comptes Rendus Biologies 336(5-6), 265-272.

Fernández F, Gómez R, Vanegas LF, de la Noval BM, Martínez MA. 2000. Producto inoculante micorrizógeno. Oficina Nacional de Propiedad Industrial. Cuba, Patente No. 22641. for assessing soil quality. Bloem J, Hopkins DW, Benedetti A. (Eds.) CABI

Filho JAC, Sobrinho RR, Rascholati SF. 2017. Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In Agriculturally Important Microbes for Sustainable Agriculture; Meena VS, Mishra P, Bisht J, Pattanayak A, Eds; Springer: Singapore; DOI:10.1007/978-981-10-5343-6_5.

Garbaye J. 1994. Mycorrhization helper bacteria: a new dimension to the mycorrhizal symbiosis. Acta Bot Gallica 141(4), 517-21.

Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular–arbuscular infection in roots. New Phytologist 84, 489-500.

Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P. 2014. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytologist 204, 609-619.

DOI: 10.1111/nph.12949

Gnamkoulamba A, Tounou AK, Tchao M, Tchabi A, Adjevi A, Kossi M, Batawila K. 2018b. Prévalence et diversité des spores des champignons mycorhiziens arbusculaires en culture de riz sous les différents systèmes de culture de riz au Togo. Journal of Applied Biosciences 126, 12647-12664 https://dx.doi.org/10.4314/jab.v126i1.3

Gnamkoulamba A, Tounou AK, Tchao M, Tchabi A, Adjevi Anani KM, Batawila K. 2018a. Évaluation Au Champ Du Potentiel De Croissance Et De La Production Du Riz (Oryza Sativa L.) Variété IR841 Inoculé En Pépinière Par Quatre Souches De Champignons Mycorhiziens À Arbuscules. European Scientific Journal 14(12), 452-481.

Gruhn P, Goletti F, Yudelman M. 2000. Integrated nutrient management, soil fertility, and sustainable agriculture: current issues and future challenges. International Food Policy Research Institute.

Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P. 2014. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25(5), 359-376.

Hernandez M, Argel JP, Ibrahim AM, Mannetje TL. 1995. Pasture production, diet selection and live weight gains of cattle grazing brachiaria brizantha with or without arachis pintoi at two stocking rates in the Atlantic zone of Costa Rica. Tropical Grasslands 29, 134-141.

Houngnandan P, Yemadje RGH, Kane A, Boeckx P, Van Cleemput O. 2009. Les glomales indigènes de la forêt claire à Isoberlinia doka (Craib et Stapf) à Wari Maro au centre du Bénin. Tropicultura 27, 83-87.

Hussain M, Asghar H, Arshad M, Shahbaz Mr. 2013. Screening of multi-trait rhizobacteria to Improve maize growth under axenic conditions. Journal of Animal Plant Science 23(2), 514-20.

Igue MA, Oga AC, Balogoun I, Saidou A, Ezui G, Youl S, Kpagbin G, Mando A, Sogbedji JM. 2016. Détermination des formules d’engrais minéraux et organiques sur deux types de sols pour une meilleure productivité de maïs (Zea mays L.) dans la commune de Banikoara (Nord-Est du Bénin). European Scientific Journal 12(30), 362-377.

Ilunga TH, Banza MJ, Lukusa ML, Mukunto KI, Malonga HL, Kanyenga LA, Nyembo KL. 2018. Influence du moment d’application du NPK sur la croissance et le rendement du maïs (Zea mays L.) installé sur un ferra sol. Journal of Applied Biosciences 127, 12794-12803

Jakobsen I, Rosendahl L. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115, 77-83.

Jastrzębska M, Kostrzewska M, Treder K, Jastrzębski W, Makowski P. 2016. Phosphorus biofertilizers from ash and bones-agronomic evaluation of functional properties. Journal Agricultural Science 8(6), 58-70.

Kjedahl J. 1883. Method for the quantitative determination of nitrogen in chemical subtances. Carlberq laboratory. Copenhague, Danemark.

Lenoir I, Fontaine J, Lounès-Hadj A. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123, 4-15. doi: 10.1016/j. phytochem.2016.01.002.

Lynch JP, Brown KM. 2001. Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237(2), 225-37.

Ma M, Ongena M, Wang Q, Cao FJX, Li Jun. 2018. Chronic fertilization of 37 years alters the phylogenetic structure of soil arbuscular mycorrhizal fungi in Chinese Mollisols. AMB Express 8, 57 https:/doi org/ 10. 1186/s 13568-018-0587-2

MAEP. 2017. Recueil des technologies agricoles prometteuses développées par le Système National de Recherche Agricole (SNRA) de 1996 à 2015. Document Technique et d’Informations. ISBN : 978-99919-2-985-9 Dépôt légal n° 9433 du 12 juin 2017. Bibliothèque Nationale du Bénin, 2ème trimestre. 288p

Mahmoud E, NA EK, Robin P, Akkal Corfini and LA-Al-Rahman N. 2009. Effects of different organic and inorganic fertilizers are cucumber yield and Some soil properties. World Journal Agricural Science 5, 408-414.

Malonda AN, Nzola-meso TM, Manga AM, Yandju MC. 2019. Effet des champignons mycorhiziens Arbusculaires sur le phosphore des sols tropicaux et implication dans la biosynthèse du caroténoïde du manioc. Journal of Apply Biosciences 135, 137 5013764

McNear DHJr. 2013. The rhizosphere-roots, soil and everything in between. Nature Education Knowledge 4(3), 1-15.

Megueni C, Awono ET, Ndjouenkeu R. 2011. Effet simultané de la dilution et de la combinaison du Rhizobium et des mycorhizes sur la production foliaire et les propriétés physico-chimiques des jeunes feuilles de Vigna unguiculata (L.) Walp. Journal of Applied biosciences 40, 2668 -2676, 9 p.

Metson AJ. 1956. Methods of chemical analysis for soil survey samples. Soil Science 83(3), 245.

Mitra D, Navendra U, Panneerselvam U, Ansuman S, Ganeshamurthy AN, Divya J. 2019. Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. International Journal Life Science and Applied Science 1, 1-10.

Mosse B, Giovannetti M. 1980. An evaluation of technologies for measuring vesicular-arbuscular infection in roots. New Phytologist 84, 489-500.

Navarro JM, Perez–Tornero O, Morte A. 2014. Alleviation of salt stress in citrus seedling inoculated with arbuscular mycorrhizal fungi depends on the rootstock tolerance. Journal Plant Physiology 171(1), 76-85. https://doi.org/ 10.1016/j. jplph. 2013.06.006

Ndoye F, Diedhiou AG, Gueye M, Nyembo K, Useni SY, Mpundu MM, Bugeme MD, Kasongo LE, Baboy LL. 2012. Effets des apports des doses variées de fertilisants inorganiques (NPKS et Urée) sur le rendement et la rentabilité économique de nouvelles variétés de Zea mays L. à Lubumbashi, Sud Est de la RD Congo. Journal of Applied Biosciences 59, 4286-4296.

Nkebiwe PM, Weinmann M, Müller T. 2016. Improving fertilizer-depot exploitation and maize growth by inoculation with plant growth-promoting bacteria: from lab to field. Chemical Biology Technology Agricultural 3(1), 15-15.

Nyembo KL, Useni SY, Mpundu MM, Bugeme MD, The K, Baboy LL. 2012. Effects of contributions of various doses of inorganic fertilizers (Urea and NPKS) on yield and economic viability of new varieties of Zea mays L. Lubumbashi, South Eastern DR Congo. Journal of Applied Bioscience 59, 4286-4296.

Patale SW, Shinde BP. 2010a. Studies on Tomato (Lycopersicon esculentum Mill) with reference to AM fungi. ASIAN Journal Experimental Biological Science 6-14.

Patale SW, Shinde BP. 2010b. Occurrence of Arbuscular Mycorrhizal Fungi from Rhizosphere and Non-rhizosphere Soil of Lycopersicon esculentum Mill. Flora and Fauna 17, 20.

Patale SW. 2016. Screening of Brinjal Rhizosphere Soil for Assessment of AM Fungi. International Journal of Advanced. Multi. Research 3(1), 74- 77.

Pellegrino E, Opik M, Bonari E, Ercoli L. 2015. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biology & Biochemistry 84, 210-217.

Pharudi AJ. 2010. Effect of mycorrhizal inoculation and phosphorus levels on growth and yield of wheat and maize crops grown on a phosphorus deficient sandy soil. Master Thesis of University of Stellenbosch 181p.

Phillips JM, Hayman DS. 1970. Improved procedures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1), 158-161.

Pinheiro J, Bates D, Deb Roy S, Sarkar D, Core Team R. 2019. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-141, https://CRAN.R-project.org/package=nlme.

Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA. 2005. Managing arbuscular mycorrhizal fungi in cropping systems. Can. Journal Plant Science 85, 31-40.

R Development Core Team. 2018. R: A language and environment for statistical computing. http://www.r-project.org.

Sharma HSS, Selby C, Carmichael E, McRoberts C, Rao JR. 2016. Physicochemical analyses of plant bio-stimulant formulations and characterization of trading products by instrumental techniques. Biology Chemical Technology Agricultural 3(1), 1-17.

Smith SE, Read DJ. 2008. Mycorrhizal symbiosis (Academic Press, San Diego).

Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A et Oehl F. 2008. Arbuscular mycorrhizal fungal communities in sub- Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18, 181-195.

Tchabi A, Hountondji F, Ogunsola B, Lawouin L, Coyne D, Wiemken A, Oehl F. 2016. Effect of two species of arbuscular mycorrhizal fungi inoculation on development of micropropagated yam plantlets and suppression of Scutellonema bradys (Tylenchideae). Journal of Entomology and Nematology 8, 1-10.

Thonar C, Lekfeld JDS, Cozzolino V, Kundel D, Kulhánek M, Mosimann C, Walder F. 2017. Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chemical and Biological Technologies in Agriculture 4, 7.

Thonar C, Schnepf A, Frossard E, Roose T, Jansa J. 2011. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231-245.

Thongkhoun S, Shinichi H, Rie TK, Tanaka A, Katsuya Y, Takenaka C, Shingo H. 2017. Varietal differences in the growth responses of rice to an arbuscular mycorrhizal fungus under natural upland conditions. Plants Signaling and behavior 12, e1274483. DOI:10.1080/15592324.2016.1274483.

Tobolbai R, Adamou S, Ngakou A. 2018. Morphological and structural diversities of indigenous endomycorrhiza communities associated to maize [Zea mays (l.)] in Northern Cameroonian soils. Journal of animal & plant sciences. Vol.38, issue 1, 6057-6073 http://www.m.elewa.org/japs.

Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d’un système radiculaire. Recherches et méthodes d’estimation ayant une signification fonctionnelle. In: Aspects physiologiques et génétiques des mycorhizes, Dijon, 1985. INRA (éd.) pp. 21 7-221.

Verbruggen E, van der Heijden MG, Rillig MC, Kiers ET. 2013. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197, 1104-1109. doi: 10.1111/j.1469-8137. 2012.04348.x

Yagoob Habibzadeh. 2015. Academic journals vol. 9 (2). Pp. 65-70, February 2015 DOI: 10.5897/AJEL2014. 1691 Article Number: C4EI81849785 ISSN 1996-0786 Copyriht @ 2015 Auiho (s) relation the copyright of this article.

Yallou CG, Aihou K, Adjanohoun A, Baco MN, Sanni OA Amadou L. 2010. Directory maize varieties popularized in Benin. Technical Backgrounder and extension. Legal Deposit No. 4920 of 03/12/2010, Q4, National Library (NL) of Bénin. ISBN: 978-99919-368-3-3-4,19p.

Yang S, Li F, Malhi SS, Wang P, Dongrang S, Wang J. 2004. Long term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in Northwestern China. Agronomy Journal 96, 1039-1049. doi: 10.2134/ agronj2004.1039

Yayeh B, Melkamu A. 2017. Impact of crop production inputs on soil health-a review. Asian Journal Plant Science 16, 109-131.