Effect of the salinity stress and arbuscular mycorhizal fungi (AMF) on the growth and nutrition of the Marigold (Calendula officinalis)

Paper Details

Research Paper 01/04/2015
Views (632)
current_issue_feature_image
publication_file

Effect of the salinity stress and arbuscular mycorhizal fungi (AMF) on the growth and nutrition of the Marigold (Calendula officinalis)

S.H. Mbadi, Z.T Alipour, H. Asghari, B. Kashefi
J. Biodiv. & Environ. Sci. 6(4), 215-219, April 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

In order to evaluate the effect of the Arbuscular mycorhizal fungi (AMF) on Calendula officinalis, an experimental has been carried out in term of salinity stress in totally randomized Factorials in shahrood. The samples were cultivated in tested sandy loam soil. This experiment were conducted in hub seedling (pot) method with four salinity treatment in 1.5-3.5-5.5-7.5 (dSm-1) concentration, two level with and without mycorrhiza in 4 trial. The Fl Calendula seed were cultivated with mycorhizal fungi simultaneously in which the salinity treatment was applied in leaf stage four. The measured characteristics included dry weight, root and shoots, leaf area, number of flowering branches. The result has implied that utilizing the different mycorrhiza salinity stress has a meaningful effect on measured characteristics that is on the dry weight of shoots, the leaf area on 5%, and the number of flowering branches Chlorophyll a and b on the 1%.

Arnon AN. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23, 112-121.

AlaviPanah QK. 1992. Revive the passion: Journal of Forest and Rangeland 31, 62-71.

Dodd IC, Ruíz-Lozano JM. 2012. Microbial enhancement of crop resource use efficiency: Current Opinion in Biotechnology 23, 236-242.

Evelin H, Kapoor R, Giri B. 2007. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review Annals of Botany 104, 1263-1280.

Giri B, Kapoor R, Mukerji KG. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues: Microbial Ecology 54, 753-760.

Goh TB, Banerjee MR, Shihua T, Burton DL. 1997. Vesicular-arbuscular mycorrhizea mediated uptake and translocation of P and Zn by wheat in a calcareous soil: Canadian Journal of Plant Science 77, 339-346.

Juniper S, Abbott LK. 2006. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi: Mycorrhiza 16, 371-379.

Mukerji KG, Chamola BP. 2003. Compendium of Mycorrhizal Research. A. P. H. Publisher. New Delhi. P. 310.

Rangasamy P, Olsson A. 1991. Sodicityand soil structure. Aus Journal: Soil Research 29, 935-952.

Ruíz-Lozano JM, Perálvarez MC, Aroca R, Azcón R. 2011. The application of a treated sugar beet waste residue to soil modifies the responses of mycorrhizal and non mycorrhizal lettuce plants to drought stress: Plant and Soil 346, 153-166.

Valentine AJ, Mortimer PE, Lintnaar A, Borgo R. 2006. Drought responses of arbuscular mycorrhizal grapevines: Symbiosis 41, 127-133.

Wilde P, Manal A, Stodden M, Sieverding E, Hilderbrandt U, Bothe H. 2009. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes: Environmental Microbiology 11, 1548-1561.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.