Effect of the salinity stress and arbuscular mycorhizal fungi (AMF) on the growth and nutrition of the Marigold (Calendula officinalis)

Paper Details

Research Paper 01/04/2015
Views (671)
current_issue_feature_image
publication_file

Effect of the salinity stress and arbuscular mycorhizal fungi (AMF) on the growth and nutrition of the Marigold (Calendula officinalis)

S.H. Mbadi, Z.T Alipour, H. Asghari, B. Kashefi
J. Biodiv. & Environ. Sci. 6(4), 215-219, April 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

In order to evaluate the effect of the Arbuscular mycorhizal fungi (AMF) on Calendula officinalis, an experimental has been carried out in term of salinity stress in totally randomized Factorials in shahrood. The samples were cultivated in tested sandy loam soil. This experiment were conducted in hub seedling (pot) method with four salinity treatment in 1.5-3.5-5.5-7.5 (dSm-1) concentration, two level with and without mycorrhiza in 4 trial. The Fl Calendula seed were cultivated with mycorhizal fungi simultaneously in which the salinity treatment was applied in leaf stage four. The measured characteristics included dry weight, root and shoots, leaf area, number of flowering branches. The result has implied that utilizing the different mycorrhiza salinity stress has a meaningful effect on measured characteristics that is on the dry weight of shoots, the leaf area on 5%, and the number of flowering branches Chlorophyll a and b on the 1%.

Arnon AN. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23, 112-121.

AlaviPanah QK. 1992. Revive the passion: Journal of Forest and Rangeland 31, 62-71.

Dodd IC, Ruíz-Lozano JM. 2012. Microbial enhancement of crop resource use efficiency: Current Opinion in Biotechnology 23, 236-242.

Evelin H, Kapoor R, Giri B. 2007. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review Annals of Botany 104, 1263-1280.

Giri B, Kapoor R, Mukerji KG. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues: Microbial Ecology 54, 753-760.

Goh TB, Banerjee MR, Shihua T, Burton DL. 1997. Vesicular-arbuscular mycorrhizea mediated uptake and translocation of P and Zn by wheat in a calcareous soil: Canadian Journal of Plant Science 77, 339-346.

Juniper S, Abbott LK. 2006. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi: Mycorrhiza 16, 371-379.

Mukerji KG, Chamola BP. 2003. Compendium of Mycorrhizal Research. A. P. H. Publisher. New Delhi. P. 310.

Rangasamy P, Olsson A. 1991. Sodicityand soil structure. Aus Journal: Soil Research 29, 935-952.

Ruíz-Lozano JM, Perálvarez MC, Aroca R, Azcón R. 2011. The application of a treated sugar beet waste residue to soil modifies the responses of mycorrhizal and non mycorrhizal lettuce plants to drought stress: Plant and Soil 346, 153-166.

Valentine AJ, Mortimer PE, Lintnaar A, Borgo R. 2006. Drought responses of arbuscular mycorrhizal grapevines: Symbiosis 41, 127-133.

Wilde P, Manal A, Stodden M, Sieverding E, Hilderbrandt U, Bothe H. 2009. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes: Environmental Microbiology 11, 1548-1561.

Related Articles

An investigation of phytochemical constitutents and pharmacological activities of Strobilanthes andamanensis leaf extract

Deepika, V. Ambikapathy, S. Babu, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(4), 86-94, October 2025.

Assessing public awareness and knowledge of drinking water safety in Carmen, Cagayan De Oro City, Philippines

Ronnie L. Besagas, Romeo M. Del Rosario, Angelo Mark P. Walag, J. Biodiv. & Environ. Sci. 27(4), 80-85, October 2025.

Baseline floristics and above-ground biomass in permanent sample plots across miombo woodlands in different land tenure systems in Hwedza, Zimbabwe

Edwin Nyamugadza, Sara Feresu, Billy Mukamuri, Casey Ryan, Clemence Zimudzi, J. Biodiv. & Environ. Sci. 27(4), 65-79, October 2025.

Adapting to shocks and stressors: Aqua-marine processors approach

Kathlyn A. Mata, J. Biodiv. & Environ. Sci. 27(4), 57-64, October 2025.

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.

Ecological restoration outcomes in Rwanda’s Rugezi wetland: Biodiversity indices and food web recovery

Concorde Kubwimana, Jean Claude Shimirwa, Pancras Ndokoye, J. Biodiv. & Environ. Sci. 27(4), 32-40, October 2025.

Noise pollution in the urban environment and its impact on human health: A review

Israa Radhi Khudhair, Bushra Hameed Rasheed, Rana Ihssan Hamad, J. Biodiv. & Environ. Sci. 27(4), 28-31, October 2025.